Selective catalytic oxidation for methane conversión to metanol: A review
Abstract
The oxidation of methane to methanol using a direct, economical and low energy cost is an objective pursued by the industry since its inception. Methane is the main component of natural gas, while methanol is both fuel and raw material in the chemical industry. This review article presents the results of work done to achieve this process, identifying the most relevant aspects involved. Low values of methane conversion and selectivity to methanol were found mainly due to two factors: the first is the difficulty of activating methane and the second, being able to control the process to avoid sequential oxidation reactions that generate other products. To increase the performance of the process is necessary to optimize the synthesis conditions of the materials including temperature, time and loads of the active component, which will influence the physical and chemical behavior of the catalyst. It is also necessary to control the variables of the catalytic oxidation process, such as the type of reactor material, feed flows, the residence times of the gases inside the reactor, and thus avoid competitive reactions that decrease the selectivity to the alcohol.
Downloads
References
J. Hargreaves, G. Hutchings y R. Joyner, “Control of product selectivity in the partial oxidation of methane,” Nature, vol. 348, pp. 428-429, 1990. DOI: https://doi.org/10.1038/348428a0
R. Herman, Q. Sun, C. Shi y K. Klier, “Development of active oxide catalysts for the direct oxidation of methane to formaldehyde,” Catalysis Today, vol. 37, no. 1, pp. 1-14, 1997. DOI: https://doi.org/10.1016/S0920-5861(96)00256-8
Y. I. Pyatnitskii, “Contemporary methods for the direct catalytic conversion of methane,” Theoretical and Experimental Chemistry, vol. 39, no. 4, pp. 201-218, 2003. DOI: https://doi.org/10.1023/A:1025797710504
K. Fujimoto, F. H. Ribeiro, F. M. Avalos-Borja y E. Iglesia, “Structure and Reactivity of PdOx / ZrO2 Catalysts for Methane Oxidation at Low Temperatures,” Journal of Catalysis, vol. 179, no. 2, pp. 431-442, 1998. DOI: https://doi.org/10.1006/jcat.1998.2178
Bp., “Natural gas reserves,” 2016. [En línea]. Disponible en: http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/natural-gas/natural-gas-reserves.html
C. J. Castaneda, “Historical Overview of the Natural Gas Industry,” Reference Module in Earth Systems and Environmental Sciences, pp. 1-11, 2014. DOI: https://doi.org/10.1016/b978-0-12-409548-9.09034-5
G. Rasul, G. K. S. Prakash y G. A. Olah, “Comparative study of the hypercoordinate carbonium ions and their boron analogs: A challenge for spectroscopists,” Chemical Physics Letters, vol. 517, no. 1-3, pp. 1-8, 2011. DOI: https://doi.org/10.1016/j.cplett.2011.10.020
J. March. Advance Organic Chemistry: Reactions, Mechanisms and Structure. Nueva York, Estados Unidos: McGraw-Hill Book Company, 1968.
H. Schwarz, “Chemistry with Methane: Concepts Rather than Recipes,” Angewandte Chemie International Edition, vol. 50, no. 43, pp. 10096-10115, 2011. DOI: https://doi.org/10.1002/anie.201006424
T. J. Hall, J. S. J. Hargreaves, G. J. Hutchings, R. W. Joyner y S. H. Taylor, “Catalytic synthesis of methanol and formaldehyde by partial oxidation of methane,” Fuel Process. Technol., vol. 42, no. 2-3, pp. 151-178, 1995. DOI: https://doi.org/10.1016/0378-3820(94)00125-d
P. Khirsariya y R. K. Mewada, “Single Step Oxidation of Methane to Methanol–Towards Better Understanding,” Procedia Engineering, vol. 51, pp. 409-415, 2013. DOI: https://doi.org/10.1016/j.proeng.2013.01.057
P. Aghalayam, Y. K. Park, N. Fernandes, V. Papavassiliou et al., “A C1 mechanism for methane oxidation on platinum,” Journal of Catalysis, vol. 213, no. 1, pp. 23-38, 2013. DOI: https://doi.org/10.1016/S0021-9517(02)00045-3
Q. Zhang, D. He y Q. Zhu, “Recent Progress in Direct Partial Oxidation of Methane to Methanol,” Journal of Natural Gas Chemistry, vol. 12, pp. 81-89.
Methanol Institute, “Methanol producction,” 2013. [En línea]. Disponible en: http://www.methanol.org/the-methanol-industry
N. R. Foster, “Direct Catalytic Oxidation of Methane to Methanol - A Review,” Appl. Catal., vol. 19, no. 1, pp. 1-11, 1985. DOI: https://doi.org/10.1016/S0166-9834(00)82665-2
D. Lance y E.G. Elworthy, “Process for the manufacture of Methyl-alcohol from Methane,” British patent no. 7297, Jan. 17,1907.
R. T. Elworthy, “Can. Dept. Mines, Summary Report,” no. 586, 1921.
B. K. Hodnett. Heterogeneous Catalytic Oxidation. London, United Kingdom: John Wiley & Sons Inc., 2000.
M. J. da Silva, “Synthesis of methanol from methane : Challenges and advances on the multi-step (syngas) and one-step routes (DMTM),” Fuel Processing Technology Journal, vol. 145, pp. 42-61, 2016. DOI: https://doi.org/10.1016/j.fuproc.2016.01.023
V. I. Atroschchenko, N. A. Gavrya, and Z. M. Shchedrinskaya, USSR Patent no. SU 132623 A1 1960.
V. I. Atroshchenko, Z. M. Shchedrinskaya y N. A. Gavrya, “Catalysts for the oxidation of natural gas to formaldehyde and methanol,” Zhurnal Prikladnoi Khimii, vol. 38, no. 3, pp. 643-649, 1965.
V. I. Atroshchenko y Z. M. Shchedrinskaya, “Inst”. Tr.Khark. Politekhn. Inst., vol. 39, no. 19, 1962.
L. I. Avramenko y R. V. Kolesnikova, “Reactions of the simplest hydrocarbons with atomic oxygen (in Russian),” Izd. ANSSSR, Moscow, 1954.
I. A. Makarov, USSR Patent no. 205000, 1967.
M. Eusuf, Khursheed-ul-Islam, y M. Moslem, Sci. Res.(Dacca), vol. 5, no. 2-3, p. 104, 1968.
M. Eusuf y M. Ahmed, Bangladesh J.Sci. Ind., vol. 6, no. 1–2, p. 46, 1969.
R. S. Mann y M. K. Dosi, “Partial oxidation of methane to formaldehyde over halogen modified catalyst,” Journal of Chemical Technology and Biotechnology, vol. 29, pp. 467-469, 1979. DOI: https://doi.org/10.1002/jctb.503290803
A. Y. Averbuch, I. P. Mukhlenov, y Y. A. Ivanov, Prevrashch. Uglevodorodov Kislotno - Osnovn. Geterogennykh Katal, 1977.
D. A. Dowden y G. T. Walker, British Patent no. 1244001, 1971.
H. J. F. Stroud, British Patent no. 1398385,1975.
V. K. Leonov, I. A. Ryzhak, L. M. Kalinichenko, Y. L. Vysotskii, L. E. Semikina, y Y. A. Shuster, Katal. Katal, vol. 15, p. 6, 1977.
R. S. Liu, M. Iwamoto y J. H. Lunsford, “Partial oxidation of methane by nitrous oxide over molybdenum oxide supported on silica,” Journal of the Chemical Society, Chemical Communications. vol. 1, p. 78, 1982. DOI: https://doi.org/10.1039/c39820000078
M. Iwamoto, Japanese Patent no. 5892630, 1983.
M. Iwamoto, Japanese Patent no. 5892629, 1983.
H. D. Gesser, N. R. Hunter, y L. A. Morton, International Chemical Congress of Pacific Basin Societies, 1984.
N. R. Hunter, H. D. Gesser, L. A. Morton y P. S. Yarlagadda, “Methanol Formation at High Pressure by the Catalyzed Oxidation of Natural Gas and by the Sensitized Oxidation of Methane,” Applied Catalysis, vol. 57, no. 1, pp. 45-54, 1990. DOI: https://doi.org/10.1016/S0166-9834(00)80722-8
N. D. Spencer, C. J. Pereira y R. K. Grassellit, “The Effect of Sodium on the MoO3-SiO2 - Catalyzed Partial Oxidation of Methane,” Journal of Catalysis, vol. 126, no. 2, pp. 546-554, 1990. DOI: https://doi.org/10.1016/0021-9517(90)90019-G
J. E. Lyons, P. E. Ellis y V. A. Durante, “Active iron oxo centers for the selective catalytic oxidation of Alkanes,” Studies in Surface Science and Catalysis, vol. 67, pp. 99-116, 1991. DOI: https://doi.org/10.1016/s0167-2991(08)61930-8
Q. Sun, R. Herman y K. Klier, “Selective oxidation of methane with air over silica catalysts,” Catalysis Letters, vol. 16, no. 3, pp. 251-261, 1992. DOI: https://doi.org/10.1007/BF00764337
G. S. Walker, J. A. Lapszewicz y G. A. Foulds, “Partial oxidation of methane to methanol - comparison of heterogeneous catalyst and homogeneous gas phase reactions,” Catalysis Today, vol. 21, no. 2-3, pp. 519-526, 1994. DOI: https://doi.org/10.1016/0920-5861(94)80175-4
T. J. Hall, J. S. J. Hargreaves, G. J. Hutchings, R. W. Joyner y S. H. Taylor, “Catalytic synthesis of methanol and formaldehyde by partial oxidation of methane,” Fuel Processing Technology, vol. 42, no. 2-3, pp. 151-178, 1995. DOI: https://doi.org/10.1016/0378-3820(94)00125-D
R. Raja y P. Ratnasamy, “Direct conversion of methane to methanol,” Applied Catalysis a-General, vol. 158, no. 1-2, pp. L7-L15, 1997. DOI: https://doi.org/10.1016/S0926-860X(97)00105-1
S. H. Taylor, J. S. J.Hargreaves, G. J. Hutchings, R. W. Joyner y C. W. Lembacher, “The partial oxidation of methane to methanol: An approach to catalyst design,” Catalysis Today, vol. 42, no. 3, pp. 217-224, 1998. DOI: https://doi.org/10.1016/S0920-5861(98)00095-9
R. L. McCormick, M. B. Al-sahali y G. O. Alptekin, “Partial oxidation of methane, methanol, formaldehyde, and carbon monoxide over silica: global reaction kinetics,” Applied Catalysis A: General, vol. 226, no. 1-2, pp. 129-138, 2002, DOI: https://doi.org/10.1016/S0926-860X(01)00894-8
Q. Zhang, D. He, J. Li, J., B. Xu et al., “Comparatively high yield methanol production from gas phase partial oxidation of methane,” Applied Catalysis A: General, vol. 224, no. 1–2, pp. 201-207, 2002. DOI: https://doi.org/10.1016/S0926-860X(01)00820-1
L. Chen, X. Zhang, L. Huang y L. Lei, “Application of in-plasma catalysis and post-plasma catalysis for methane partial oxidation to methanol over a Fe2O3-CuO/γ-Al2O3 catalyst,” Journal of Natural Gas Chemistry, vol. 19, no. 6, pp. 628-637, 2010. DOI: https://doi.org/10.1016/S1003-9953(09)60129-8
N. V. Beznis, A. N. C. van Laak, B. M. Weckhuysen y J. H. Bitter, “Oxidation of methane to methanol and formaldehyde over Co–ZSM-5 molecular sieves: Tuning the reactivity and selectivity by alkaline and acid treatments of the zeolite ZSM-5 agglomerates,” Microporous and Mesoporous Materials, vol. 138, no. 1-3, pp. 176-183, 2011. DOI: https://doi.org/10.1016/j.micromeso.2010.09.009
R. Polnišer, M. Štolcová, M., Hronec y M.Mikula, “Structure and reactivity of copper iron pyrophosphate catalysts for selective oxidation of methane to formaldehyde and methanol,” Applied Catalysis A: General, vol. 400, no. 1-2, pp. 122-130, 2011. DOI: https://doi.org/10.1016/j.apcata.2011.04.022
F. Xu, L. Zhu, F. Hou y B. Shen, “Selective oxidation of methane to methanol in acetic acid solvent with Pd(OAc)2-p-benzoquinone-CO catalyst system,” Journal of Fuel Chemistry and Technology, vol. 40, no. 9, pp. 1098-1102, 2012. DOI: https://doi.org/10.1016/S1872-5813(12)60040-1
Y. Hu, M. Anpo y C. Wei, “Effect of the local structures of V-oxides in MCM-41 on the photocatalytic properties for the partial oxidation of methane to methanol,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 264, pp. 48-55, 2013. DOI: https://doi.org/10.1016/j.jphotochem.2013.05.005
S. Mansouri, O. Benlounes, C. Rabia, R. Thouvenot et al., “Partial oxidation of methane over modified Keggin-type polyoxotungstates,” Journal of Molecular Catalysis A: Chemical, vol. 379, pp. 255-262, 2013. DOI: https://doi.org/10.1016/j.molcata.2013.08.006
M. V. Parfenov, E. V. Starokon, L. V. Pirutko y G. I. Panov, “Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite,” Journal of Catalysis, vol. 318, pp. 14-21, 2014. DOI: https://doi.org/10.1016/j.jcat.2014.07.009
Y. Krisyuningsih Krisnandi, B. Ary Pujangga Putra, M. Bahtiar, I. Abdullah y R. Francis Howe, “Partial Oxidation of Methane to Methanol over Heterogeneous Catalyst Co/ZSM-5,” Procedia Chemistry, vol. 14, pp. 508-515, 2015. DOI: https://doi.org/10.1016/j.proche.2015.03.068
C. A. Guerrero-Fajardo, D. Niznansky, Y. N’Guyen, C. Courson y A.-C- Roger, “Methane selective oxidation to formaldehyde with Fe-catalysts supported on silica or incorporated into the support,” Catalysis Communications, vol. 9, no. 5, pp. 864-869, 2008. DOI: https://doi.org/10.1016/j.catcom.2007.09.013
C. A. Guerrero-Fajardo, Y. N’Guyen, C. Courson y A.-C. Roger, “Catalizadores Fe SiO2 para la oxidación selectiva de metano hasta formaldehido,” Ingeniería E Investigación, vol. 26, no. 2, pp. 37-44, 2006.
C. A. Guerrero-Fajardo, J. F. Castellanos, A.-C. Roger y C. Courson, “Síntesis sol-gel de catalizadores de hierro soportados sobre sílice y titania para la oxidación selectiva de metano hasta formaldehído,” Ingeniería e Investigación, vol. 28, no. 1, pp. 72-80, 2008.