Reliability Function Estimation Using Jackknife Resampling and Transformations
Abstract
For the reliability of systems, one of the main objectives is to estimate the reliability function, using the Kaplan-Meier and Nelson-Aalen estimators, under the non-parametric approach. When computational techniques are used, the Jackknife delete-I strategy offers advantages due to its consistency properties for variance estimation. However, there is uncertainty regarding the possibility of improving the estimates when the number (d) of observations that are deleted in the Jackknife delete-d sequential procedure is increased. On the other hand, due to their asymptotic variance stabilization properties, the log and log(-log) transformations are used to find confidence intervals (CI) for the reliability function. This work proposes to simultaneously combine the two strategies to find the CI for the reliability function, proposing a new procedure that does not require parametric adjustment during the time of occurrence of the event of interest, in addition to improving the estimation of the reliability function when the censoring percentages are high and the sample sizes are small, the main objective of the study. A comparison is made In the investigation via simulation with sample sizes (10,25,50) and percentages of censored data (0%,15%,50%) to calculate the error rates (T.E) and quality indices (I ) thus improving the estimates, with high censoring percentages (50%). The results of this work show that interval estimation can be improved in complex scenarios of censoring and sample sizes to the literature on reliability data analysis.
Downloads
References
I. Muhammad, X. Wang, C. Li et al., “Estimation of the reliability of a stress-strength system from poisson half logistic distribution”, Entropy, vol. 22, no. 11, oct. 2020. doi: https://doi.org/10.3390/e22111307
S. Nematolahi, S. Nazari, Z. Shayan et al., “Improved Kaplan-Meier estimator in survival analysis based on partially rank-ordered set samples”, Comput. Math. Methods Med., vol. 2020, id 7827434, abr. 2020. doi: https://doi.org/10.1155/2020/7827434
K. Nagashima, H. Noma, Y. Sato et al., “Sample size calculations for single‐arm survival studies using transformations of the Kaplan–Meier estimator”, Pharm. Stat., vol. 20, no. 3, pp. 499-511, mar. 2020. doi: https://doi.org/10.1002/pst.2090
C. F. Jekel, y V Romero, “Bootstrapping and jackknife resampling to improve sparse-sample uq methods for tail probability estimation”, en asme 2019 Verification and Validation Symposium, may. 2020. doi: https://doi.org/10.1115/VVS2019-5127
M. H. Quenouille, “Problems in plane sampling”, Inst. Math. Stat. Collect., vol. 20, no. 3, pp. 355-375, sept. 1949. doi: https://doi.org/10.1214/aoms/1177729989
J. Ramírez-Montoya, I. Osuna-Vergara, J. Rojas-Mora et al., “Remuestreo Bootstrap y Jackknife en confiabilidad: caso exponencial y Weibull”, Fac. Ing., vol. 25, no. 41, pp. 55-62, ene.-abr. 2016. doi: https://doi.org/10.19053/01211129.4137.
P. D. Rostron, T. Fearn y M. H. Ramsey, “Confidence intervals for robust estimates of measurement uncertainty”, Accredit. Qual. Assur., vol. 25, no. 2, pp. 107-119, dic. 2020. doi: https://doi.org/10.1007/s00769-019-01417-4
O. Borgan y K. Liestol, “A note on confidence intervals and bands for the survival function based on transformations”, Scand. J. St., vol. 17, no. 1, pp. 35-41, 1990. https://www.jstor.org/stable/4616153
A. Johnson. y M. Ugochukwu, “Survival estimation using Bootstrap, Jackknife and k-repeated Jackknife methods”, J. Mod. Appl. Stat. Methods, vol. 13, no. 2, nov. 2014. doi: https://doi.org/10.22237/jmasm/1414815240
A. Kumar-Mahto, Y. Mani-Tripathi y F. Kızılaslan, “Estimation of reliability in a multicomponent stress–strength model for a general class of inverted exponentiated distributions under progressive censoring”, J. Stat. Theory Pract., vol. 36, no. 3, pp. 965-987, ago. 2020. doi: https://doi.org/10.1002/qre.2610
A. Barbiero, “Data transformation for confidence interval improvement: an application to the estimation of stress-strength model reliability”, Adv. Decis. Sci., vol. 2014, id 485629, oct. 2014. doi: https://doi.org/10.1155/2014/485629
A. Khalifeh, E. Mahmoudi y A. Chaturvedi, “Sequential fixed-accuracy confidence intervals for the stress–strength reliability parameter for the exponential distribution: two-stage sampling procedure”, Comput. Stat., vol. 35, no. 4, pp. 1553-1575, feb. 2020. doi: https://doi.org/10.1007/s00180-020-00957-5
P. Plum, H. Lewitschnig y J. Pilz, “Exact confidence intervals for the hazard rate of a series reliability system”, Annu. Reliab. Maintainab. Symp., pp. 1-6, ene. 2020. doi: https://doi.org/10.1109/RAMS48030.2020.9153656
E. Kaplan y P. Meier, “Estimation from incomplete observations”, J. Am. Stat. Assoc., vol. 53, no. 282, pp. 457-481, jun. 1958. doi: https://doi.org/10.1080/01621459.1958.10501452
R. P. C. Lira, R. Antunes-Foschini y E. M. Rocha, “Survival analysis Kaplan-Meier curves: a method to predict the future”, Arq. Bras. Oftal., vol. 83, no. 2, pp. 5-7, dic. 2020. doi: https://doi.org/10.5935/0004-2749.20200036
W. Nelson, “Hazard plotting for incomplete failure data”, J. Qual. Technol., vol. 61, pp. 27-52, ene. 1969. doi: https://doi.org/10.1080/00224065.1969.11980344
J. Kalbfleisch y R. Prentice, The statistical analysis of failure time data, 2ª ed, Nueva York: John Wiley & Sons, 1980. doi: http://dx.doi.org/10.1002/9781118032985
R Development Core Team, A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2007. http://www.R-project.org
J. C. Correa y E. Sierra, “Intervalos de confianza para la comparación de dos proporciones”, Rev. Colomb. Estad., vol. 26, no. 1, pp. 61-75, 2003. https://revistas.unal.edu.co/index.php/estad/article/view/28677.
Jiang, R. “A bias-corrected Kaplan-Meier estimator”, en Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling, pp. 1-6, ago. 2020. doi: https://doi.org/10.1109/APARM49247.2020.9209357
J. Ramirez-Montoya. “Comparación de intervalos de confianza para la función de supervivencia con censura a la derecha”. Revista Colombiana de Estadística, vol. 34, no. 1, pp. 197-209, 2011. https://revistas.unal.edu.co/index.php/estad/article/view/29918
L. Wang, y F. Yu, “Jackknife resampling parameter estimation method for weighted total least squares”, Commun. Stat.-Theory and Methods, vol. 49, no. 23, pp. 5810-5828, jun. 2020. doi: https://doi.org/10.1080/03610926.2019.1622725