Use of Cedrela odorata Linnaeus Exudate for Inhibiting Corrosion by Chlorides in Reinforced Concrete
Abstract
This paper evaluates the use of cedar tree exudate in chloride penetration and the probability of steel corrosion in reinforced concrete (rc), considering 0.3, 0.5, 0.7, and 0.9 % exudate by cement weight in the mixture at water/cement (w/c) ratios of 0.55 and 0.60. Under these conditions, cylindrical specimens of 4 inches in diameter and 8 inches in height were constructed. The water-sol- uble chloride content of the extracted concrete powder was measured at 0.5, 1.0, and 2.0 cm depth according to astm C1218/C1218M, while the probability of corrosion was determined by measuring electric potentials with astm C876. A favorable incidence of 0.46 % by weight of concrete was found when using 0.7 % exudate at the w/c ratio of 0.55 at the closest depth to the steel, compared to the 0.55 % target. The probability of steel corrosion is reduced to 10 % with potentials higher than -0.2 V with more prolonged exposure to chlorides.Downloads
References
R. Huza, "The durability and service life benefits of stainless steel rebar and the underpinning properties and features-A stainless industry primer for owners, planners, specifiers, and designers on the technical and market realities," in IABSE Symp. Rep., 2018, vol. 109, no. 56, pp. 880-887.
X. Shi, N. Xie, K. Fortune, and J. Gong, "Durability of steel-reinforced concrete in chloride environments: An overview," Constr. Build. Mater., vol. 30, pp. 125- 38, May 2012, doi: 10.1016/j.conbuildmat.2011.12.038
https://doi.org/10.1016/j.conbuildmat.2011.12.038
M. Quraishi, D. Nayak, R. Kumar, and V. Kumar, "Corrosion of Reinforced Steel in Concrete and Its Control: An overview," J. Steel Struct. Constr., vol. 03, no. 01, pp. 1-6, 2017, doi: https://doi.org/10.4172/2472- 0437.1000124
https://doi.org/10.4172/2472-0437.1000124
A. M. Aguirre and R. Mejía de Gutiérrez, "Durabilidad del hormigón armado expuesto a condiciones agresi- vas," Mater. Construcc., vol. 63, no. 309, pp. 7-38, Mar. 2013, doi: 10.3989/mc.2013.00313.
https://doi.org/10.3989/mc.2013.00313
P. Zhang et al., "Steel reinforcement corrosion in con- crete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation," Constr. Build. Mater., vol. 148, pp. 113 -121, Sep. 2017, doi: 10.1016/j.conbuildmat.2017.05.078
https://doi.org/10.1016/j.conbuildmat.2017.05.078
R. Wattanapornprom and T. Ishida, "Modeling of chlo- ride penetration into concrete under airborne chlori- de environmental conditions combined with washout effects," J. Adv. Concr. Technol., vol. 15, no. 3, pp. 126 -142, 2017, doi: doi.org/10.3151/jact.15.126
https://doi.org/10.3151/jact.15.126
Y. Liu et al., "Effect of ginger extract as green inhibi- tor on chloride-induced corrosion of carbon steel in simulated concrete pore solutions," J. Clean. Prod., vol. 214, pp. 298 -307, Mar. 2019, doi: 10.1016/j.jcle- pro.2018.12.299
https://doi.org/10.1016/j.jclepro.2018.12.299
E. Alibakhshi, M. Ramezanzadeh, S. A. Haddadi, G. Bahlakeh, B. Ramezanzadeh, and M. Mahdavian, "Persian Liquorice extract as a highly efficient sus- tainable corrosion inhibitor for mild steel in sodium chloride solution," J. Clean. Prod., vol- 210, pp. 660 -672, Feb. 2019, doi: 10.1016/j.jclepro.2018.11.053
https://doi.org/10.1016/j.jclepro.2018.11.053
J. O. Okeniyi, A. P. I. Popoola, and C. A. Loto, "Corro- sion-inhibition and compressive-strength performan- ce of Phyllanthus muellerianus and triethanolamine on steel-reinforced concrete immersed in saline/marine simulating-environment," Energy Procedia, vol. 119, pp. 972 -979, Jul. 2017, doi: 10.1016/j.egypro.2017.07.130
https://doi.org/10.1016/j.egypro.2017.07.130
C. Xiong et al., "Preparation of phytic acid conver- sion coating and corrosion protection performances for steel in chlorinated simulated concrete pore solu- tion," Corros. Sci., vol. 139, pp. 275 -288, Jul. 2018, doi: 10.1016/j.corsci.2018.05.018
https://doi.org/10.1016/j.corsci.2018.05.018
M. G. Stewart and E. Bastidas-Arteaga, Corrosion of concrete and steel structures in a changing climate. El- sevier Inc., 2019.
https://doi.org/10.1016/B978-0-12-816782-3.00004-8
A. Castañeda, "Estudio de la corrosión atmosférica del acero de refuerzo embebido en el hormigón armado en La Habana," Ph.D. Dissertation, Inst. Sup. Politec. José Antonio Echeverría, Havana, Cuba, 2013.
K. Nasr, M. Fedel, K. Essalah, F. Deflorian, and N. Souissi, "Experimental and theoretical study of Matri- caria recutita chamomile extract as corrosion inhibi- tor for steel in neutral chloride media," Anti-Corros. Method. Mater., vol. 65, no. 3, pp. 292 -309, May 2018, doi: 10.1108/acmm-12-2017-1869
https://doi.org/10.1108/ACMM-12-2017-1869
I. Elmiziani, S. Houbairi, M. Essahli, S. Lhaloui, and A. Lamiri, "Lead corrosion inhibition by Cedrus at- lantica as a green inhibitor in 0.1M Na2CO3 solution," Int. J. Adv. Chem., vol. 5, no. 1, p. 1, Jan. 2017, doi: 10.14419/ijac.v5i1.7115
https://doi.org/10.14419/ijac.v5i1.7115
V. I. Vorobyova, M. I. Skiba, and I. M. Trus, "Apricot pomaces extract (Prunus armeniaca l.) as a highly effi- cient sustainable corrosion inhibitor for mild steel in sodium chloride solution," Int. J. Corros. Scale Inhib., vol. 8, no. 4, Dec 2019, doi: 10.17675/2305-6894-2019- 8-4-15
https://doi.org/10.17675/2305-6894-2019-8-4-15
W. Wang et al., "Employing ginger extract as an eco-friendly corrosion inhibitor in cementitious mate- rials," Constr. Build. Mater., vol. 228, pp. 116713, Dec. 2019, doi: 10.1016/j.conbuildmat.2019.116713
https://doi.org/10.1016/j.conbuildmat.2019.116713
E. Quiñones, Y. Garcia, and W. Mendez, "Evaluación de la corrosión de acero de refuerzo frente al ambien- te salino y ensayo preliminar de un ecoinhibidor para retardar el proceso corrosivo," in XIII Congr. Nac. Corros./IV Congr. Int. Mater. Integridad Estructural, ASCOR 2016, Jan. 2016.
Z. Zhang, H. Ba, Z. Wu, and Y. Zhu, "The inhibition mechanism of maize gluten meal extract as green inhibitor for steel in concrete via experimental and theoretical elucidation," Constr. Build. Mater., vol. 198, pp. 208-298, Feb. 2019, doi: 10.1016/j.conbuild- mat.2018.11.216
https://doi.org/10.1016/j.conbuildmat.2018.11.216
S. P. Palanisamy, G. Maheswaran, A. G. Selvarani, C. Kamal, and G. Venkatesh, "Ricinus communis-A green extract for the improvement of anti-corrosion and mechanical properties of reinforcing steel in con- crete in chloride media," J. Build. Eng., vol. 19, pp. 376-383, Sep. 2018, doi: 10.1016/j.jobe.2018.05.020
https://doi.org/10.1016/j.jobe.2018.05.020
E. F. Hernández, P. F. D. J. Cano-Barrita, F. M. León-Martínez, and A. A. Torres-Acosta, "Performan- ce of cactus mucilage and brown seaweed extract as a steel corrosion inhibitor in chloride contaminated alkaline media," Anti-Corros. Method. Mater., vol. 64, no. 5, pp. 529-539, Sep. 2017, doi: 10.1108/acmm-02- 2016-1646
https://doi.org/10.1108/ACMM-02-2016-1646
J. O. Okeniyi, C. A. Loto, and A. P. I. Popoola, "Rhi- zophora mangle L. Effects on steel-reinforced concrete in 0.5 M H2SO4: Implications for corrosion-degrada- tion of wind-energy structures in industrial environ- ments," Energy Procedia, vol. 50, pp. 429-436, 2014, doi: 10.1016/j.egypro.2014.06.052
https://doi.org/10.1016/j.egypro.2014.06.052
Y.P.Asmara,T.Kurniawan,A.G.E.Sutjipto,andJ. Jafar, "Application of plants extracts as green corrosion inhibitors for steel in concrete-A review," Indones. J. Sci. Technol., vol. 3, no. 2, pp. 158-170, Aug. 2018, doi: 10.17509/ijost.v3i2.12760
https://doi.org/10.17509/ijost.v3i2.12760
R. Anitha, S. Chitra, V. Hemapriya, I. M. Chung, S. H. Kim, and M. Prabakaran, "Implications of eco-addi- tion inhibitor to mitigate corrosion in reinforced ste- el embedded in concrete," Constr. Build. Mater., vol. 213, pp. 246-256, Jul. 2019, doi: 10.1016/j.conbuild- mat.2019.04.046
https://doi.org/10.1016/j.conbuildmat.2019.04.046
M. Ramezanzadeh, G. Bahlakeh, Z. Sanaei, and B. Ramezanzadeh, "Studying the Urtica dioica leaves ex- tract inhibition effect on the mild steel corrosion in 1 M HCl solution: Complementary experimental, ab ini- tio quantum mechanics, Monte Carlo and molecular dynamics studies," J. Mol. Liq., vol. 272, pp. 120-136, Dec. 2018, doi: 10.1016/j.molliq.2018.09.059
https://doi.org/10.1016/j.molliq.2018.09.059
N. Raghavendra, "Latest Exploration on Natural Co- rrosion Inhibitors for Industrial Important Metals in Hostile Fluid Environments: A Comprehensive Over- view," J Bio Tribo-Corros., vol. 5, no. 3, p. 54, 2019, doi: 10.1007/s40735-019-0240-x
https://doi.org/10.1007/s40735-019-0240-x
O. A. Adetunji and M. A. Odeniyi, "Material and Compression Properties of Cedrela odorata Gum Co-Processed with Plantain Starch and Microcrysta- lline Cellulose," Polim. Med., vol. 46, no. 1, pp. 35-43, 2016, doi: 10.17219/pim/64924
https://doi.org/10.17219/pim/64924
R. Acevedo Barrios, "Diagnóstico preeliminar am- biental de playas de Cartagena de Indias, Caribe co- lombiano," Tek. Rev. Cient., vol. 17, no. 1, p. 38, Jul. 2017, doi: 10.25044/25392190.891
https://doi.org/10.25044/25392190.891
A. Carvajal Guerra and F. Guzmán, "Estudio de aditi- vos inhibidores de corrosión para estructuras de hor- migón armado. Análisis de potencial de corrosión," Rev. Construcc., vol. 4, no. 2, pp. 25-29, Dec. 2005,
N. P. Vaddey, M. Shakouri, and D. Trejo, "Predicting chloride testing outcome of different cementitious sys- tems," ACI Mater. J., vol. 117, no. 1, pp. 139-151, 2020.
https://doi.org/10.14359/51719149
D. Meng, S. Lin, and H. Azari, "Nondestructive
Corrosion Evaluation of Reinforced Concrete Bridge Decks with Overlays: An Experimental Study," J. Test. Eval., vol. 48, no. 1, pp. 516-537, Jan. 2020. Available: https://www.redalyc.org/pdf/1276/127619745003.pdf
https://doi.org/10.1520/JTE20180388
Frank E. Grubbs, "Procedures for Detecting Outlying Observations in Samples," Techno- metrics, vol. 11, no. 1, pp. 1-21, Feb. 1969, doi: 10.1080/00401706.1969.10490657
https://doi.org/10.1080/00401706.1969.10490657
F. E. Grubbs, "Sample Criteria for Testing Outlying Observations," Ann. Math. Stat., vol. 21, no. 1, pp. 27- 58, Mar. 1950, doi: 10.1214/aoms/1177729885
https://doi.org/10.1214/aoms/1177729885
Título C: Concreto estructural, NCR10-Reglamento Colombiano de Construcción Sismo Resistente, Aso- ciación Colombiana de Ingeniería Sísmica, Colombia, 2010.
C. Fu, H. Ye, N. Jin, and Y. Huang, "Chloride Pene- tration in Reinforced Concrete Beams under Combi- ned Sustained Loading and Drying-Wetting Cycles," J. Mater. Civ. Eng., vol. 34, no. 2, p. 04020025, Apr. 2020, doi: 10.1061/(asce)mt.1943-5533.0003076
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003076
H. Ye, C. Fu, N. Jin, and X. Jin, "Influence of flexu- ral loading on chloride ingress in concrete subjected to cyclic drying-wetting condition," Comput. Concr., vol. 15, no. 2, pp. 183-198, Feb. 2015, doi: 10.12989/ cac.2015.15.2.183
https://doi.org/10.12989/cac.2015.15.2.183
X. Gang, L. Yun-Pan, S. Yi-Biao, and X. Ke, "Chloride ion transport mechanism in concrete due to wetting and drying cycles," Struct. Concr., vol. 16, no. 2, pp. 289-296, Jun. 2015, doi: 10.1002/suco.201400035
https://doi.org/10.1002/suco.201400035
J. Cai, M. Li, Q. Chen, J. Lai, and M. Wei, "Chloride ingression in reinforced concrete beams subjected to flexural loading under cyclic drying-wetting condi- tion," J. Cent. South Univ. Sci. Technol., vol. 50, no. 11, pp. 2840-2850, 2019.
H. Ye, X. Jin, C. Fu, N. Jin, Y. Xu, and T. Huang, "Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation," Constr. Build. Ma- ter., vol. 112, pp. 457-463, Jun. 2016, doi: 10.1016/j.con- buildmat.2016.02.194
https://doi.org/10.1016/j.conbuildmat.2016.02.194
C. M. Ikumapayi, "Development of a short time mo- del for predicting chloride ingress into normal and pozzolanic concrete," IOP Conf. Ser. Mater. Sci. Eng., vol. 640, no. 012113, Nov. 2019, doi: 10.1088/1757- 899x/640/1/012113
https://doi.org/10.1088/1757-899X/640/1/012113
M. H. Tadayon, M. Shekarchi, and M. Tadayon, "Long-term field study of chloride ingress in concretes containing pozzolans exposed to severe marine tidal zone," Constr. Build. Mater., vol. 123, pp. 611-616, Oct. 2016, doi: 10.1016/j.conbuildmat.2016.07.074
https://doi.org/10.1016/j.conbuildmat.2016.07.074
S. D. R. Mariscal-Lucero, M. Rosales-Castro, V. Sán- chez-Monsalvo, and J. A. Honorato-Salazar, "Eva- luación de fenoles y limonoides en hojas de Cedrela odorata (Meliaceae) de una plantación experimen- tal establecida en Tezonapa Veracruz, México," Rev. Biol. Trop., vol. 63, no. 2, pp. 545-558, Dec. 2014, doi: 10.15517/rbt.v63i2.15405
https://doi.org/10.15517/rbt.v63i2.15405
L. Hou et al., "A Combined Inhibiting Effect of So- dium Alginate and Sodium Phosphate on the Corro- sion of Magnesium Alloy AZ31 in NaCl Solution," J. Electrochem. Soc., vol. 163, no. 8, pp. C486-C494, 2016, doi: 10.1149/2.0941608jes
https://doi.org/10.1149/2.0941608jes
A. Biswas, P. Mourya, D. Mondal, S. Pal, and G. Uda- yabhanu, "Grafting effect of gum acacia on mild steel corrosion in acidic medium: Gravimetric and electro- chemical study," J. Mol. Liq., vol. 251, pp. 470-479, Feb. 2018, doi: 10.1016/j.molliq.2017.12.087
https://doi.org/10.1016/j.molliq.2017.12.087
M. Messali et al., "Guar gum as efficient non-toxic inhibitor of carbon steel corrosion in phosphoric acid medium: Electrochemical, surface, DFT and MD si- mulations studies," J. Mol. Struct., vol. 1145, pp. 43-54, Oct. 2017, doi: 10.1016/j.molstruc.2017.05.081
https://doi.org/10.1016/j.molstruc.2017.05.081
I. Pradipta, D. Kong, and J. B. L. Tan, "Natural organic antioxidants from green tea form a protective layer to inhibit corrosion of steel reinforcing bars embedded in mortar," Constr. Build. Mater., vol. 221, pp. 351-362, Oct. 2019, doi: 10.1016/j.conbuildmat.2019.06.006
https://doi.org/10.1016/j.conbuildmat.2019.06.006
S. A. Abdulsada and T. I. Török, "Studying effect of addition green inhibitor on compression strength of reinforced concrete," IOP Conf. Ser. Mater. Sci. Eng., vol. 613, no. 1, pp. 3-7, Nov. 2019, doi: 10.1088/1757- 899x/613/1/012024
https://doi.org/10.1088/1757-899X/613/1/012024
A. Mathina and R. Rajalakshmi, "Corrosion inhibi- tion of mild steel in acid medium using Canna indi- ca as green corrosion inhibitor,"rasayan J. Chem., vol. 9, no. 1, pp. 56-66, 2016. Available: http://rasayan- journal.co.in/vol-9/issue-1/9_Vol.9,%20No.1,%2056- 66,%20Jan.-March,%202016,%20RJC-1373.pdf
M. Hegde and S. P. Nayak, "Aqueous extract of Dille- nia Pentagyna Fruit as green inhibitor for mild steel corrosion in 0.5 M hydrochloric acid solution," J. Ma- ter. Environ. Sci., vol. 10, no. 1, pp. 22-31, 2019. Avai- lable: https://www.jmaterenvironsci.com/Document/ vol10/vol10_N1/3-JMES-Hegde-2019.pdf
D. B. Left, M. Zertoubi, S. Khoudali, and M. Azzi, "New application of Chamaerops humilis L. extract as a green corrosion inhibitor for reinforcement steel in a simulated carbonated concrete pore solution," Port. Electrochim. Acta, vol. 36, no. 4, pp. 249-257, 2018, doi: 10.4152/pea.201804249
https://doi.org/10.4152/pea.201804249
P. Dohare, D. S. Chauhan, and M. A. Quraishi, "Ex- pired podocip drug as potential corrosion inhibitor for carbon steel in acid chloride solution," Int. J. Corros. Scale Inhib., vol. 7, no. 1, pp. 25-37, Feb. 2018, doi: 10.17675/2305-6894-2018-7-1-3