Stakeholders Identification in a Disaster Through Twitter: Study Case SINABUNG 2018

Abstract

Twitter has become an important tool for knowing in real time what happens in the political, social and economic world. This platform is increasingly attractive as a communication method, which can be used in logistic and humanitarian operations processes improving communication between the actors involved in a natural disaster situation. Thus, in the present investigation a Social Network Analysis SNA approach is implemented using data generated in the social network Twitter about a disaster event analyzing three important actors: users, hashtags and URLs. The methodology is applied to a disaster study case (Sinabung volcano eruption in 2018). From this analysis, relevant users, topics and sources of information were identified during the disaster’s occurrence. These analyzes offer an overview of the interactions and impact of the most influential elements during the event under study, having important contribution news teams, social networks and research centers. The findings of the present study are compared with a previous study finding similarities in most of these but having in this study an additional identification of actors of the academic and technical field who seek to contribute and disseminate relevant information of the disruptive event.

Author Biographies

Daniel Orlando Martínez Quezada, Universidad Autónoma de Bucaramanga

Daniel Martínez MSc. en Ingeniería Industrial en 2017 e Ingeniero Industrial en 2014, ambos de la Universidad Industrial de Santander, Colombia. Docente cátedra, afiliado al Grupo de Investigación en Optimización y Organización de Sistemas Productivos y Logísticos OPALO, adscrito a la Escuela de Estudios Industriales y Empresariales de la Universidad Industrial de Santander, Colombia. Docente tiempo completo de la Universidad Autónoma de Bucaramanga,  afiliado al programa de ingeniería de mercados, también coordinador de la Especialización en Gestión Logística Integral.

Robinson Ortiz Sierra, Universidad Industrial de Santander

Ingeniero Industrial, Facultad de Ingeniería Fisicomecánicas Universidad Industrial de Santander, Bucaramanga, Colombia

Juan Guillermo Martínez Cano, Universidad Industrial de Santander

Ingeniero Industrial, Facultad de Ingeniería Fisicomecánicas Universidad Industrial de Santander, Bucaramanga, Colombia

Henry Lamos Díaz, Universidad Industrial de Santander

PhD Físico-Matemática, Profesor Asociado, Investigador grupo OPALO, Facultad de Ingeniería Fisicomecánicas Universidad Industrial de Santander, Bucaramanga, Colombia

Downloads

Download data is not yet available.

Author Biographies

Daniel Orlando Martínez Quezada, Universidad Autónoma de Bucaramanga

Daniel Martínez MSc. en Ingeniería Industrial en 2017 e Ingeniero Industrial en 2014, ambos de la Universidad Industrial de Santander, Colombia. Docente cátedra, afiliado al Grupo de Investigación en Optimización y Organización de Sistemas Productivos y Logísticos OPALO, adscrito a la Escuela de Estudios Industriales y Empresariales de la Universidad Industrial de Santander, Colombia. Docente tiempo completo de la Universidad Autónoma de Bucaramanga,  afiliado al programa de ingeniería de mercados, también coordinador de la Especialización en Gestión Logística Integral.

Robinson Ortiz Sierra, Universidad Industrial de Santander

Ingeniero Industrial, Facultad de Ingeniería Fisicomecánicas Universidad Industrial de Santander, Bucaramanga, Colombia

Juan Guillermo Martínez Cano, Universidad Industrial de Santander

Ingeniero Industrial, Facultad de Ingeniería Fisicomecánicas Universidad Industrial de Santander, Bucaramanga, Colombia

Henry Lamos Díaz, Universidad Industrial de Santander

PhD Físico-Matemática, Profesor Asociado, Investigador grupo OPALO, Facultad de Ingeniería Fisicomecánicas Universidad Industrial de Santander, Bucaramanga, Colombia

References

Holguín-Veras, J., Jaller, M., Van Wassenhove, L. N., Pérez, N., & Wachtendorf, T. (2012). On the unique features of post-disaster humanitarian logistics. Journal of Operations Management, 30(7–8), 494–506. https://doi.org/10.1016/J.JOM.2012.08.003

Rodríguez, H., Díaz, W., Santos, J. M., & Aguirre, B. E. (2007). Communicating Risk and Uncertainty: Science, Technology, and Disasters at the Crossroads (pp. 476–488). Springer, New York, NY. https://doi.org/10.1007/978-0-387-32353-4_29.

Landwehr, P. M., & Carley, K. M. (2014). Social Media in Disaster Relief. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-40837-3_7

Gao, H., Barbier, G., Goolsby, R., & Zeng, D. (2011). Harnessing the Crowdsourcing Power of Social Media for Disaster Relief. Retrieved from https://apps.dtic.mil/docs/citations/ADA581803

Keim, M. E., & Noji, E. (2011). Emergent use of social media: a new age of opportunity for disaster resilience. American Journal of Disaster Medicine, 6(1), 47–54. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21466029

Feldman, D., Contreras, S., Karlin, B., Basolo, V., Matthew, R., Sanders, B., … Luke, A. (2016). Communicating flood risk: Looking back and forward at traditional and social media outlets. International Journal of Disaster Risk Reduction, 15, 43–51. https://doi.org/10.1016/J.IJDRR.2015.12.004

Liu, B. F., Fraustino, J. D., & Jin, Y. (2015). How Disaster Information Form, Source, Type, and Prior Disaster Exposure Affect Public Outcomes: Jumping on the Social Media Bandwagon? Journal of Applied Communication Research, 43(1), 44–65. https://doi.org/10.1080/00909882.2014.982685

Takahashi, B., Tandoc, E. C., & Carmichael, C. (2015). Communicating on Twitter during a disaster: An analysis of tweets during Typhoon Haiyan in the Philippines. Computers in Human Behavior, 50, 392–398. https://doi.org/10.1016/J.CHB.2015.04.020

Scott, J., & Carrington, P. J. (2011). The SAGE handbook of social network analysis. SAGE publications.

Smith, M. A., Rainie, L., Shneiderman, B., & Himelboim, I. (2014). Mapping Twitter topic networks: From polarized crowds to community clusters. Pew Research Center, 20, 1–56.

Oliveira, M., & Gama, J. (2012). An overview of social network analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(2), 99–115. https://doi.org/10.1002/widm.1048

Wasserman, S., & Faust, K. (1994). Social network analysis : methods and applications.

Knoke, D., & Yang, S. (2008). Social network analysis (Vol. 154). Sage.

How to Cite
Martínez Quezada, D. O., Ortiz Sierra, R., Martínez Cano, J. G., & Lamos Díaz, H. (2019). Stakeholders Identification in a Disaster Through Twitter: Study Case SINABUNG 2018. Ciencia E Ingenieria Neogranadina, 30(1), 117–132. https://doi.org/10.18359/rcin.3938
Published
2019-11-12
Section
ARTICLES