Assessment of Image-Texture Improvement Applied to Unmanned Aerial Vehicle Imagery for the Identification of Biotic Stress in Espeletia. Case Study: Moorlands of Chingaza (Colombia)

Keywords: Texture measurements, unmanned aerial vehicles, biotic stress, support vector machine, maximum likelihood, Espeletia

Abstract

Espeletia is one of the most representative endemic species of moorland ecosystems, and is currently being affected by biotic stress. Meanwhile, the analysis of images obtained by means of unmanned aerial vehicle imagery has proved its usefulness in environmental monitoring activities. The present work is aimed at establishing whether image-texture analysis applied to unmanned aerial vehicle imagery from Moorlands of Chingaza (Colombia) allows the identification of biotic stress in Espeletia. To this end, this study makes use of occurrence analysis, gray-level co-occurrence matrix, and Fourier transform. Identification of healthy/unhealthy Espeletia is conducted using maximum likelihood tests and support vector machines. The results are assessed based on overall accuracy, the kappa coefficient and bhattacharyya distance. By combining spectral and image-texture information, it is shown that classification accuracy increases, reaching kappa coefficient values of 0,9824 and overall accuracy values of 99,51%. 

Author Biographies

Laura Daniela Martín, Universidad Distrital Francisco José de Caldas

Ingeniera Catastral y Geodesta, Consultoría, IEEE-GRSS-UD. Bogotá, Colombia.

Javier Medina, Universidad Distrital Francisco José de Caldas

Licenciado en matemáticas, Doctor en Informática, Profesor titular, Grupo GEFEM. Universidad Distrital Francisco José de Caldas

Erika Upegui, Universidad Distrital Francisco José de Caldas

Ingeniera Catastral y Geodesta, Doctor en geografía y ordenamiento territorial, Profesora asociada, Grupo de investigación GEFEM, IEEE-GRSS-UD. Universidad Distrital Francisco José de Caldas

Downloads

Download data is not yet available.

Author Biographies

Laura Daniela Martín, Universidad Distrital Francisco José de Caldas

Ingeniera Catastral y Geodesta, Consultoría, IEEE-GRSS-UD. Bogotá, Colombia.

Javier Medina, Universidad Distrital Francisco José de Caldas

Licenciado en matemáticas, Doctor en Informática, Profesor titular, Grupo GEFEM. Universidad Distrital Francisco José de Caldas

Erika Upegui, Universidad Distrital Francisco José de Caldas

Ingeniera Catastral y Geodesta, Doctor en geografía y ordenamiento territorial, Profesora asociada, Grupo de investigación GEFEM, IEEE-GRSS-UD. Universidad Distrital Francisco José de Caldas

References

FAO, ¿por qué invertir en el desarrollo sostenible de las montañas?, Roma, 2014.

O. V. Ríos and P. Pedraza, El Parque Nacional Natural Chingaza. UNal de Colombia, 2004.

A. Sanchez, A. Rey-Sánchez, J.M. Posada, W. K. Smith. Interplay of seasonal sunlight, air and leaf temperature in two alpine páramo species, Colombian Andes. Agricultural and Forest Meteorology, 253–254, (2018), 38–47. https://doi.org/10.1016/j.agrformet.2018.01.033.

M. Cabrera and W. Ramírez, Restauración Ecológica de los páramos de Colombia: Transformación y herramientas para su conservación. Min Ambiente, Instituto von Humboldt, 2014.

N. Susiˇc, U. Zibrat, S. Sirca, P. Strajnar, J Razinger, M. Knapiˇc, A. Vonˇcina, G. Urek, BG. Stare, Discrimination between abiotic and biotic drought stress in tomatoes using hyperspectral imaging, Sensors and Actuators: B. Chemical (2018), https://doi.org/10.1016/j.snb.2018.06.121

U. Žibrat, N. Susic, M. Knapic, S. Širca, P. Strajnar, J. Razinger, A. Voncina, G. Urek, B. Geric. Pipeline for imaging, extraction, pre-processing, and processing of time-series hyperspectral data for discriminating drought stress origin in tomatoes, MethodsX, 6 (2019), 399–408, https://doi.org/10.1016/j.mex.2019.02.022

I. Colomina and P. Molina, “Unmanned aerial systems for photogrammetry and remote sensing: A review,” ISPRS J. Photogramm. Remote Sens., vol. 92, pp. 79–97, Jun. 2014.

J. J. Díaz García, “Estudio de índices de vegetación a partir de imágenes aéreas tomadas desde UAS/RPAS y aplicaciones de éstos a la agricultura de precisión.,” 2015.

L. C. G. David and A. H. Ballado, “Vegetation indices and textures in object-based weed detection from UAV imagery,” in Control System, Computing and Engineering (ICCSCE), 2016 6th IEEE International Conference on, pp. 273–278, 2016.

R. M. Haralick, “Statistical and structural approaches to texture”, Proc. IEEE, vol. 67 (5), pp. 786–804, 1979.

A. S. Laliberte and A. Rango, “Texture and Scale in Object-Based Analysis of Subdecimeter Resolution Unmanned Aerial Vehicle (UAV) Imagery,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 761–770, Mar. 2009.

J. Yue, G. Yang, Q. Tiana, H. Feng, K. Xua, C. Zhoub, Estimate of winter-wheat above-ground biomass based on UAV ultra high ground-resolution image textures and vegetation indices, ISPRS Journal of Photogrammetry and Remote Sensing, 150, (2019), 226–244. https://doi.org/10.1016/j.isprsjprs.2019.02.022

Q. Feng, J. Liu, and J. Gong, “UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis,” Remote Sens., vol. 7, no. 1, pp. 1074–1094, Jan. 2015. doi:10.3390/rs70101074

S. Ondimu, H. Murase, “Water stress detection in Sunagoke moss (Rhacomitrium canescens) using combined thermal infrared and visible light imaging techniques” Biosyst. Eng., vol. 100 (1), pp. 4–13, 2008. doi: 10.1016/j.biosystemseng.2008.02.005

N. Hashim, S. Adebayo, K. Abdana, M. Hanafi. Comparative study of transform-based image texture analysis for the evaluation of banana quality using an optical backscattering system. Postharvest Biology and Technology, 135, (2018), 38–50. http://dx.doi.org/10.1016/j.postharvbio.2017.08.021

M.P. Ferreira, F. Wagner, L. Aragão, Y. Shimabukuro, C. Filhod, Tree species classification in tropical forests uing visible to shortwave infrared WorldView-3 images and texture analysis, ISPRS Journal of Photogrammetry and Remote Sensing, 149, 2019, 119–131. https://doi.org/10.1016/j.isprsjprs.2019.01.019

P. Mishra, A. Nordon, M.S. Mohd Asaari, G. Lian, S. Redfern. Fusing spectral and textural information in near-infrared hyperspectral imaging to improve green tea classification modelling, Journal of Food Engineering (2019), doi: https://doi.org/10.1016/j.jfoodeng.2019.01.009.

V.H. Vásquez, M.A. Serrano, 2009. Las áreas naturales protegidas de Colombia. Conservación Internacional-Colombia, Bogotá.

L. Sastoque, E. Gutiérrez, E. Upegui. Espacialización del estrés biótico en los frailejones del Parque Natural Nacional Chingaza (Colombia) utilizando imágenes capturadas con un vehículo aéreo no tripulado. Nuevas plataformas y sensores de teledetección. XVII Congreso de la Asociación Española de Teledetección. Murcia 3-7 octubre 2017. pp. 461-464

V. A. Montoliu. “Respuestas fisiológicas de los cítricos sometidas a condiciones de estrés biótico y abiótico aspectos comunes y específicos”. Tesis Doctoral. Universidad de Jaume, España. 2010.

J. Singla, and SG. Krattinger. Biotic Stress Resistance Genes in Wheat. Genetics of Grains. 2016. Elsevier Ltd.

M. Tuceryan and A. K. Jain, “Texture analysis,” Handb. Pattern Recognit. Comput. Vis., vol. 2, pp. 207–248, 1998.

J. Sklansky, “Image Segmentation and Feature Extraction,” IEEE Trans. Syst. Man Cybern., vol. 8, no. 4, pp. 237–247, Apr. 1978. doi: 10.1109/TSMC.1978.4309944

A. R. Backes, W. N. Gonçalves, A. S. Martinez, and O. M. Bruno, “Texture analysis and classification using deterministic tourist walk,” Pattern Recognition, vol. 43, no. 3, pp. 685–694, Mar. 2010. https://doi.org/10.1016/j.patcog.2009.07.017

G. N. Srinivasan, & G Shobha. Statistical texture analysis. En Proceedings of world academy of science, engineering and technology. Vol. 36, pp. 1264–1269, 2008.

N. Aggarwal, & R. K. Agrawal, First and second order statistics features for classification of magnetic resonance brain images. Journal of Signal and Information Processing, 3(02), 146, 2012. doi: 10.4236/jsip.2012.32019

C. Pinilla, A. Alcalá, & F. Ariza. Filtrado de imágenes en el dominio de la frecuencia. Revista de la Asociación Española de Teledetección, 8, 1997.

V. Friedrich. Transformada de Fourier de una Imagen y filtrado de una imagen en el dominio de la frecuencia. Funciones de Variable Compleja. 2013.

J. A. Richards, & X. Jia. Remote Sensing Digital Image Analysis - An Introduction. 4th. 2006.

E. Chuvieco. Teledetección ambiental: la observación de la Tierra desde el espacio (3ra ed.). Barcelona: Ariel Ciencia. 2002.

L. Wang, W. P. Sousa, & P. Gong. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing, 25(24), 5655–5668, 2004. https://doi.org/10.1080/014311602331291215

F. Pacifici, M. Chini, and W. J. Emery, “A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification,” Remote Sens. Environ., vol. 113, no. 6, pp. 1276–1292, Jun. 2009. https://doi.org/10.1016/j.rse.2009.02.014

J. Hua, Z. Xiong, J. Lowey, E. Suh, and E. R. Dougherty. Optimal number of features as a function of sample size for various classification rules. Bioinformatics, Volume 21, Issue 8, Pages 1509–1515, (2004), https://doi.org/10.1093/bioinformatics/bti171

How to Cite
Martín, L. D., Medina, J., & Upegui, E. (2019). Assessment of Image-Texture Improvement Applied to Unmanned Aerial Vehicle Imagery for the Identification of Biotic Stress in Espeletia. Case Study: Moorlands of Chingaza (Colombia). Ciencia E Ingenieria Neogranadina, 30(1), 27–44. https://doi.org/10.18359/rcin.3842
Published
2019-11-12
Section
ARTICLES