Correlation between CBR and Resistance to Unconfned Compression

  • Eimar Andres Sandoval Vallejo Universidad del Valle Purdue University
  • William Albeiro Rivera Mena Ingetec Ingenieros Consultores S.A
Keywords: Undisturbed CBR, Fine-Grained Soils, Unconfned Compressive Strength, Natural Moisture, Saturated Soils

Abstract

The thickness and layer properties of a pavement structure are highly determined by subgrade stiffness. However, in some cases, performing direct stiffness tests is impossible, at least for
the required frequency, which indicates that correlations with other soil properties must be used.
Therefore, this paper reveals the results from an experimental program conducted to obtain correlations between the California bearing ratio (CBR) of undisturbed fne-grained soils and their unconfned compressive strength and/or some index properties. For these purposes, CBR, unconfned
compressive strength, Atterberg limits, granulometry, and natural moisture content tests were performed. Thirty-eight samples were selected to guarantee a statistical power and confdence level of
95%, together with minimum Pearson correlation coefcient (r) of 0.60. Although correlating the CBR
with the index properties assessed was impossible, the study made correlations between the natural and saturated CBR and unconfned compressive strength. These correlations, at r > 0.80, were
then compared against the correlations reported in the literature between CBR and other undrained
shear strength tests. For the same strength, the CBR values determined herein are considerably
smaller than the correlations reported in the literature.

Author Biographies

Eimar Andres Sandoval Vallejo, Universidad del Valle Purdue University

Profesor asistente de la Escuela de Ingeniería Civil y Geomática de la Universidad del Valle, Colombia. Maestro en Ciencias en Ingeniería Civil de la Universidad de Puerto Rico en Mayagüez; y actualmente candidato a Doctor en Filosofía de la Universidad de Purdue en West Lafayette, Estados Unidos. Principales temas de interés en investigación: comportamiento de suelos bajo cargas dinámicas, respuesta de túneles bajo cargas sísmicas, modelos constitutivos, interacción suelo-estructura, resistencia al esfuerzo cortante en suelos y rellenos sanitarios, estado crítico de mecánica de suelos. 

William Albeiro Rivera Mena, Ingetec Ingenieros Consultores S.A
Ingeniero civil egresado de la Escuela de Ingeniería Civil y Geomática de la Universidad del Valle, Cali, y Especialista en Gerencia Integral de Proyectos de la Universidad Militar Nueva Granada, Bogotá D.C, Colombia. Principales temas de interés en investigación: resistencia al esfuerzo cortante en suelos, planteamiento para la implementación de gestión de activos inmobiliarios, infraestructura y servicios en empresas constructoras. Actualmente vinculado a la firma Ingetec Ingenieros Consultores S.A.

Downloads

Download data is not yet available.

Author Biographies

Eimar Andres Sandoval Vallejo, Universidad del Valle Purdue University

Profesor asistente de la Escuela de Ingeniería Civil y Geomática de la Universidad del Valle, Colombia. Maestro en Ciencias en Ingeniería Civil de la Universidad de Puerto Rico en Mayagüez; y actualmente candidato a Doctor en Filosofía de la Universidad de Purdue en West Lafayette, Estados Unidos. Principales temas de interés en investigación: comportamiento de suelos bajo cargas dinámicas, respuesta de túneles bajo cargas sísmicas, modelos constitutivos, interacción suelo-estructura, resistencia al esfuerzo cortante en suelos y rellenos sanitarios, estado crítico de mecánica de suelos. 

William Albeiro Rivera Mena, Ingetec Ingenieros Consultores S.A
Ingeniero civil egresado de la Escuela de Ingeniería Civil y Geomática de la Universidad del Valle, Cali, y Especialista en Gerencia Integral de Proyectos de la Universidad Militar Nueva Granada, Bogotá D.C, Colombia. Principales temas de interés en investigación: resistencia al esfuerzo cortante en suelos, planteamiento para la implementación de gestión de activos inmobiliarios, infraestructura y servicios en empresas constructoras. Actualmente vinculado a la firma Ingetec Ingenieros Consultores S.A.

References

S. H. Carpenter, M. R. Crovetti, K. L. Smith, E. Rmeili y T. Wilson. Soil and base stabilization and associated drainage considerations. Washington D.C., United States: U.S. Department of Transportation Federal Highway Administration, Office of Technology Applications, Publication No FHWA-SA-93-004, 1992, 160 p.

Indiana Department of Transportation. Design procedures for soil modification or stabilization. West Lafayette, United States: Division of Engineering and Asset Management Office of Geotechnical Services, Indiana Department of Transportation, 2015, 18 p.

A. El Howayek, D. Muschett, T. Nantung, J. Lee, M. Santagata y A. Bobet. Verification of the enhanced integrated climatic module soil subgrade input parameters in the MEPDG. West Lafayette, United States, Purdue University: Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2016/08, 2016, 16 p.

DOI: http://dx.doi.org/10.5703/1288284316331

American Association of State Highway and Transportation Officials. AASHTO Guide for Design of Pavement Structures. Washington, D.C. United States, 1993, 624 p.

C. Jung y A. Bobet. Post-construction evaluation of lime-treated soils. West Lafayette, United States, Purdue University: Joint Transportation Research Program Publication No. FHWA/IN/JTRP-2007/25, 2008, 247 p.

DOI: http://dx.doi.org/10.5703/1288284313443

H. A. Rondón Quintana y F. A. Reyes Lizcano, “Metodologías de diseño de pavimentos flexibles: tendencias, alcances y limitaciones,” Ciencia e Ingeniería Neogranadina, Vol.17, no. 2, pp. 41-65, 2007.

DOI: http://dx.doi.org/10.15446/dyna.v81n183.36981

American Association of State Highway and Transportation Officials. Mechanistic-empirical pavement design guide, A Manual of Practice. Washington, D.C. United States, 2008, 205 p.

G. H. Gregory y S. A. Cross, “Correlation of CBR with Shear-Strength Parameters,” en Proceedings of 9th Int. Conf. on Low-Volume Roads, 2007, pp. 1-14.

B. R. Christopher, C. Schwartz y R. Boudreau. Geotechnical aspects of pavements. Washington D.C., United States: U.S. Department of Transportation, Federal Highway Administration, Report No. NHI-05-037, 2006, 888 p.

Minitab 17 Statistical Software. [Computer software], Minitab, Inc. State College, United States, 2010: (https://www.minitab.com).

ASTM D1883 – 05. Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils. ASTM International, 2005.

ASTM D2166 – 00. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, 2000.

ASTM D4318 – 10. Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, 2010.

ASTM D46913 – 09. Standard Test Method for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, 2009.

ASTM D2216 – 10. Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, 2010.

D. C. Montgomery, E. A. Peck y G. G. Vining. Introduction to Linear Regression Analysis. New York, United States: John Wiley & Sons, 2003, 645 p.

W. P. M. Black, “A method of estimating the California bearing ratio of cohesive soils from plasticity data,” Géotechnique, Vol.12, no. 4, pp. 271-282, 1962. DOI: https://doi.org/10.1680/geot.1962.12.4.271

N. B. Shirur y S. G. Hiremath, “Establishing relationships between CBR value and physical properties of soil,” IOSR Journal of Mechanical and Civil Engineering, Vol.11, no. 5, pp. 26-30, 2014.

W. P. M. Black, “The calculation of laboratory and in-situ values of California bearing ratio from bearing capacity data,” Géotechnique, Vol.11, no. 1, pp. 14-21, 1961. DOI: https://doi.org/10.1680/geot.1961.11.1.14

W. P. M. Black y N. W. Lister. The strength of clay fill subgrades: its prediction in relation to road performance. Crowthorne, Berkshire, UK: TRRL Laboratory Report 889, Transport and Road Research Laboratory, 1979, 30 p.

A. W. Skempton, “The Bearing Capacity of Clays,” en Proceedings of Building Research Congress, 1951, pp. 180-190.

W. P. M. Black. The strength of clay fill subgrades: its measurement by a penetrometer. Crowthorne, Berkshire, UK: TRRL Laboratory Report 901, Transport and Road Research Laboratory, 1979, 13 p.

How to Cite
Sandoval Vallejo, E. A., & Rivera Mena, W. A. (2019). Correlation between CBR and Resistance to Unconfned Compression. Ciencia E Ingenieria Neogranadina, 29(1), 135–152. https://doi.org/10.18359/rcin.3478
Published
2019-08-23
Section
ARTICLES