The effect of agglutinant concentration and type on coal-powder thermal conductivity
Abstract
This paper reports a thermal conductivity (k) given an environment temperature of thermal coal powder as a function of agglutinant concentration and type –i.e. water, alcohol, diesel– which changed their weight percentage (%wt) between 5-and-40 percent. Samples were obtained from Cerro Tasajero, a mine located at San Jose de Cucuta metropolitan area, which were pulverized manually using roller mill and sifted by a mesh No. 100 (150μm). The k value was determined using the physical principle of temporary linear heat flow by system KD2 Thermal Properties Analyzer (Decagon Devices, Inc.) The ash percentage in the sample was given by norm ASTM D 3174, providing a value of 1.75 percent. The sulfur concentration was obtained using norm ASTM 3177, reporting a value of 0.45 percent, while the percentage of matter volatile in the sample was 34.17 percent by applying norm ASTM 3175. The analysis of k as a function of agglutinant type and concentration was carried out adjusting the experimental data based on the logistical function where A2 corresponds to values of the thermal property (y) for an initial concentration of agglutinant (x). A1 represents such a value as agglutinant (x) concentration may be very big; xo reveals the point where bend is changing and n the reason of growth or falling. The results in this experience could be used to develop other studies in order to produce high-pressed coal powder cylinders, which will be used in industrial burning processes by sintering ceramic goods, such as roof tile, block and wall tile.Downloads
Languages:
esReferences
Sehlke G. Wichlacz P. (2009). U. S. Department of Energy's Role in the Energy-Water Nexus. In: Journal of Contemporary Water Research and Education, Vol. 143, pp. 56-62. http://dx.doi.org/10.1111/j.1936-704X.2009.00066.x
Hiroaki Y., Nobuhiro M. and Makoto T. (2003). Coal Firing Power Generation Technology. In: Journal of the Japan Institute of Energy, Vol. 82, pp. 822-829.
Vieira C. M. F. and Monteiro S. N. (2009). Incorporation of solids wastes in red ceramics – an update review. In: Revista Materia, Vol. 14, pp. 881-905.
Santurio Díaz J. (2002). Corrección y mejora del análisis de humedad del carbón térmico por medios no destructivos en tiempo real. En: Universidad de Oviedo.
Plitt L. R. (1998). Basic physical principles of on-line coal ash and moisture measurement. In: Seminar on coal moisture and ash on-line analyzers.
Unsworth J. F. Barrta D. J. Roberts P. T. (1991). Coal Quality and Combustion Performance (2007). An international perspective. In: Coal Science and Technology, Vol. 19, pp. 638-643.
Valbuena O. (2007). Efecto de la distribución del tama-o de partícula en la conductividad térmica de polvo de carbón usado en la elaboración del combustible tipo CCTA. En: Universidad Francisco de Paula Santander.
Flórez P. (2006). Mercado Nacional e internacional del carbón colombiano, En: Ministerio de Minas y energía, Bogotá.
Decagon D. (2006). KD2 Pro Theory. In: KD2 Pro User Manual.
Carslaw, H. S., and J. C. Jaeger (1959). Conduction of Heat in Solids, 2nd ed. Oxford, pp 258-262, London.
Abramowitz M., and I. A. Stegun (1972). Handbook of mathematical functios. New York: Dover Publications, Inc.
Marquard D. W., (1963). An algorithm for least-squarest estimation of nonlinear parameters, J. Soc Indust. Appl. Matb. 11: 431-441. http://dx.doi.org/10.1137/0111030
Kluitenberg G. J., J. M. Ham, and K. L. Bristow (1993). Error analysis of the heat pulse method for measuring soil volumetric heat capacity, Soli Sci. Soc. Am. J. 57:1444-1451. http://dx.doi.org/10.2136/sssaj1993.03615995005700060008x
Normas ASTM D: 3174, 3175, 3172, 3177 y 2015.
Touloukian Y., Powell R., Ho C., and Klemens P., (1970). Thermal conductivity non metallics solids, IFI/Plenum, Vol. 2, pp. 8.
Dragan A., and Scitovski R., (1996). The existence of optimal parameters of the generalized logistic function. In: Applied Mathematics and Computation, Vol. 77, pp. 281-294. http://dx.doi.org/10.1016/S0096-3003(95)00251-0
Ramírez M.L.V., Nieto de Castro C. A., Nagasaka Y., Nagashima A., Assael M. J., and Wakeham W. A. (1994). Standard reference data for termal conductivity of water, AIP.ACS. pp. 1377-1381. In: http://www.nist.gov/data/PDFfiles/jpcrd493.pdf. (Consulta: mayo de 2011).
Thermal Conductivity Common Liquids. In: htto://www.engineeringtoolbox.com/thermal-conductivity-liquids-d1260.html (Consulta: mayo de 2011).
Raffi M. Turian, Dong-Jin Sung and Feng-Lung Hsu. (1991). Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions. Fuel Vol. 70, Issue 10, pp: 1157 – 1172. http://dx.doi.org/10.1016/0016-2361(91)90237-5
Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |