A model for a disrupted mass movement process simulation. A comparison against the infinite slope method
Abstract
As an option against typical methods for slope stability analysis, this paper implements a procedure to model material flows from continuum mechanics (Eulerian approach), proposed by Iverson and Denlinger [1]. This methodology involves the behavior of a Newtonian fluid-and-solid mixture whose friction interaction is denoted by the Coulomb law. The momentum equation is simplified in such a way that generates an analytic solution, which was used to perform a sensitivity analysis. The sensitivity analysis shows the most relevant parameters in the model, i.e. slope angle, bedrock friction angle and pore pressure fraction, which govern the slope stability. As a further advantage compared against typical methods of slope stability based on limit equilibrium, the method implemented takes into account not only the field deformation mode but the safety factor, and most importantly, calculates the speed of the sliding mass and distance covered. The results may be used as a partial input to assess both hazard and vulnerability probabilistic of infrastructure impacted by a disrupted material flow.
Downloads
Languages:
esReferences
Iverson R.M., y Denlinger R.P., (2001). Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. En: Journal of Geophysical Research, Vol. 106(B1), pp. 537-552. http://dx.doi.org/10.1029/2000JB900329
Suárez J., (1998). Deslizaminetos y estabilidad de taludes en zonas tropicales. Universidad Industrial de Santander, Bucaramanga, 540p.
Shrestha B.B., Nakagawa H., Kawaike K., and Baba Y., (2008). Numerical simulation on debris-flow deposition and erosion processes upstream of a check dam with experimental verification. En: Annual of Disas. Prev. Res. Inst., Issue 51 B, pp. 613-623.
Perálvarez J.D., Chacón J., El Hamdouni J., e Irigaray C., (2008). Análisis de susceptibilidad a los movimientos de ladera mediante un SIG en la cuenca vertiente al embalse de Rules, Granada. Madrid, pp.15-27.
IDEAM (2012). Informe de predicción climática y alertas. En: http://www.pronosticosyalertas.gov.co/jsp/loader.jsf?lServicio=Publicaciones&lTipo=publicaciones&lFuncion=loadContenidoPublicacion&id=895 (marzo 7 de 2012).
Vargas R.A., (2000). Seminario estudios de riesgos por fenómenos de remoción en masa;Bogotá D.C. Dirección de Prevención y Atención de Emergencias de Santa Fe de Bogotá.
Denlinger R.P., and Iverson R.M., (2001). Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical rredictions and experimental test. En: Reviews of Geophysics, Vol. 106, pp. 553-566. http://dx.doi.org/10.1029/2000JB900330
Pudasaini S.P., Wang Y., and Hutter K., (2005). Modelling debris flows down general channels. En: Natural Hazards and Earth System Sciences. Vol. 5, pp. 799-819. http://dx.doi.org/10.5194/nhess-5-799-2005
Iverson R.M., (2005). Debris-flow mechanics. En: Debris-flow hazards and related phenomena, pp. 105-134. http://dx.doi.org/10.1007/3-540-27129-5_6
Rickenmann D., Laigle D.M.B.W., and Hübl J., (2006). Comparison of 2D debris-flow simulation models with field events. En: Computational Geosciences, Vol. 10(2), pp. 241-264. http://dx.doi.org/10.1007/s10596-005-9021-3
Wang C., Li S., and Esaki T., (2008). GIS-based two-dimensional numerical simulation of rainfall-induced debris flow. En: Natural Hazards and Earth System Sciences, Vol. 8, pp. 47-58. http://dx.doi.org/10.5194/nhess-8-47-2008
Quan Luna B., Remaître A., Van Asch Th.W.J., Malet J.P., and Van Westen C.J., (2012). Analysis of debris flows behavior with a one dimensional run-out model incorporating entrainment. En: Engineering Geology, Vol. 128, pp. 63-75. http://dx.doi.org/10.1016/j.enggeo.2011.04.007
Iverson R.M., (1997). The physics of debris flows. Reviews of Geophysics, 35 (3), pp.245-96. http://dx.doi.org/10.1029/97RG00426
Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |