Nanometrology: Impact on production systems
Abstract
This work is the result of a review of the literature on the application of nanometrology in different industrial sectors and how this one contributes to reach the standards of quality of the products through the measurement of critical parameters in the productive processes, as well as a description of the challenges this science faces in different sectors. The progress and development of new techniques that allow the measurement of the characteristics of nanodevices, nanomaterials, and equipment are reported, ones that have allowed to promote the development of industries, a decrease of costs, and the automation of processes. Within the text, there is reference to industries in progress and the effect that the control of parameters exerts for the optimization of the process, the design of a nanodevice, the growing need for regulation in the use of nanocomposites, and the designing of reliable technical and protocols for the use of nanoparticles. The advancement in nanometrology has contributed to the development of reference materials, tools that increase the accuracy and precision of the measurements, as well as techniques for the calibration of tools and equipment suitable for measurements at nanoscale, which translates into a controlled production process that ensures the quality of the products. Finally, the state of nanometrology in Colombia is included, focusing on industrial processes such as the sector of food, textile, health, and production of nanomaterials, as well as the work developed by research groups.
Downloads
References
Jorio, A. & Dresselhaus, M. S. (2011). Nanometrology Links State of the Art Academic Research and Ultimate Industry Needs for Technological Innovation. MRS Bulletin, 32(12), pp. 988-993. doi: 10.1557/mrs2007.201
Bogue, R. (2007). Nanometrology: a critical discipline for the twenty first century. Sensor Review, 27(3), pp. 189-196. doi: 10.1108/02602280710758110
Ukraintsev, V. & Banke, B. (2010). Nanoscale measurement tests metrologists. Laser Focus World, 46(12), pp. 68-71.
Logothetidis, S. (2010). Nanometrology. En: Sattler, KD. Handbook of Nanophysics. Nueva York, Estados Unidos: CRC Press, pp. 29-45.
Ukraintsev, V. & Banke, B. (2012). Review of reference metrology for nanotechnology: significance, challenges, and solutions. Journal of Micro/Nanolithography, MEMS, and MOEMS, 11(1), pp. 11010-11019. doi: 10.1117/1.jmm.11.1.011010
Berthold, J. & Imkamp, D. (2013). Looking at the future of manufacturing metrology: roadmap document of the German VDI/VDE Society for Measurement and Automatic Control. J. Sensors Sens. Syst., 2, pp. 1-7. doi: 10.5194/jsss-2-1-2013
Jorio, A. & Dresselhaus, M. S. (2008). Nanometrology Sees Progress in Synthesis, Optics, and Microscopy. MRS Bulletin, 33(10), p. 972. doi: 10.1557/mrs2008.208
Garner, C. M. & Vogel, E. M. (2006). Metrology Challenges for Emerging Research Devices and Materials. IEEE Transactions on Semiconductor Manufacturing, 19(4), pp. 397-403. doi: 10.1109/tsm.2006.884714
Yushchenko, O. V. & Yurko, D. S. (2015). Investigation of Plastic Deformation Considering Nanoscale Effects. Nanomaterials: Application & Properties, 4(1), pp. 1-3.
Barker, K. E., Cox, D. & Sveinsdottir, T. (2011). Foresight on the future of public research metrology in Europe. Foresight, 13(1), pp. 5-18. doi: 10.1108/14636681111109660
Barsic, G., Simunovic, V. & Katic, M. (2011). Ensuring measurement unity in the field of dimensional nanometrology. Annals of DAAAM & Proceedings, 22 (1), pp. 841-842.
Carreteiro-Damasceno, J., Ribeiro, A. R., Balottin, L. B. L. & Granjeiro, J. M. (2013). Nanometrology - challenges for health regulation. Vigilância Sanitária em Debate Soc. Ciência & amp; Tecnol., 1(4), pp. 100-109. doi: 10.3395/vd.v1i4.94en
Gavrilenko, V. P., Novikov, Y. A., Rakov, A. V. & Todua, P. A. (2008). Metrology and Standardization For Nanotechnologies. En AIP Conference Proceedings, 99 (1), pp. 286-297. doi: 10.1063/1.2918114
Kumar, A. & Jee, M. (2013). Nanotechnology: A Review of Applications and Issues. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 3(4), pp. 1-2.
Chang, C., Bukkapatnam, S. & Komanduri, R. (2014). Sensing and Informatics in Laser-Based Nanomanufacturing Processes. En: Nof S.Y., Weiner A.M. & Cheng G.J. Laser and Photonic Systems: Design and Integration. New York. CRC Press. pp. 201-234.
Gheorghe, G. I. & Badita, L.-L. (2013). Micro-Nanometrologically and Topographic Characterization of Nanostructured Surfaces. Procedia Engineering, 69, pp. 104-111. doi: 10.1016/j.proeng.2014.02.209
Salamon, A. W. (2011). Characterizing Engineered Nanomaterials. R&D Mag, 53 (2), pp. 24.
Weckenmann, A., Krämer, P. & Akkasoglu, G. (2012). Metrology base for scientific cognition and technical production. En AIP Conf. Proc., 1431, pp. 283-292. doi: 10.1063/1.4707576
Kang, P., Kim, D., Lee, H., Doh, S. & Cho, S. (2011). Virtual metrology for run-to-run control in semiconductor manufacturing. Expert Syst. Appl., 38(3), pp. 2508-2522. doi: 10.1016/j.eswa.2010.08.040
Diebold, A. C. (2005). Metrology (including Materials Characterization) for Nanoelectronics. En AIP Conf. Proc, 788(1), pp. 21-32. doi: 10.1063/1.2062935
Töpfer, S. C. N., Nehse, U. & Linß, G. (2007). Automated inspections for dimensional micro- and nanometrology. Measurement, 40(2), pp. 243-254. doi: 10.1016/j.measurement.2006.06.010
Kang, N., Kim, K. J., Kim, J. S. & Lee, J. H. (2015). Roles of chemical metrology in electronics industry and associated environment in Korea: A tutorial. Talanta, 134, pp. 284-91. doi: 10.1016/j.talanta.2014.11.030
Pimpin, A. & Srituravanich, W. (2012). Review on Micro- and Nanolithography Techniques and Their Applications. Engineering Journal, 16(1), pp. 37-65. doi: 10.4186/ej.2012.16.1.37
Kang, P., Lee, H., Cho, S., Kim, D., Park, J., Park, C.-K., & Doh, S. (2009). A virtual metrology system for semiconductor manufacturing. Expert Syst. Appl., 36(10), pp. 12554-12561. doi: 10.1016/j.eswa.2009.05.053
Liu, S., Chen, X. & Zhang, C. (2015). Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology. Thin Solid Films, 584, pp. 176-185. doi: 10.1016/j.tsf.2015.02.006
Likhachev, D. V. (2015). Efficient thin-film stack characterization using parametric sensitivity analysis for spectroscopic ellipsometry in semiconductor device fabrication. Thin Solid Films, 589, pp. 258-263. doi: 10.1016/j.tsf.2015.05.049
Khan, A. A., Moyne, J. R. & Tilbury, D. M. (2008). Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares. J. Process Control, 18(10), pp. 961-974. doi: 10.1016/j.jprocont.2008.04.014
Susto, G. A., Pampuri, S., Schirru, A., Beghi, A. & De Nicolao, G. (2015). Multi step virtual metrology for semiconductor manufacturing: A multilevel and regularization methods-based approach. Computers & Operations Research, 53, pp. 328-337. doi: 10.1016/j.cor.2014.05.008
Slocum Jr., A. H. & Culpepper, M. L. (2012). Design of a low-cost, precision belt-drive machine for high-throughput nanomanufacturing. Precision Engineering, 36(1), pp. 55-69. doi: 10.1016/j.precisioneng.2011.07.003
Malshe, A. P., Rajurkar, K. P., Virwani, K. R., Taylor, C. R., Bourell, D. L., Levy, G., Sundaram, M. M., McGeough, J. A., Kalyanasundaram, V. & Samant, A. N. (2010). Tip-based nanomanufacturing by electrical, chemical, mechanical and thermal processes. CIRP Ann. - Manuf. Technol, 59(2), pp. 628-651. doi: 10.1016/j.cirp.2010.05.006
Hernández-Santana, A. & Graham, D. (2010). Nanolithography: Written with light. Nat. Nanotechnol, 5(9), pp. 629-630. doi: 10.1038/nnano.2010.179
Campbell, A. C., Klapetek, P., Valtr, M. & Buršíková, V. (2012). Development of reference materials for the investigation of local mechanical properties at the nanoscale. Surf. Interface Anal, 44(8), pp. 1151-1154. doi: 10.1002/sia.4850
Lucca, D. A., Herrmann, and K. & Klopfstein, M. J. (2010). Nanoindentation: Measuring methods and applications. CIRP Ann. - Manuf. Technol, 59(2), pp. 803-819. doi: 10.1016/j.cirp.2010.05.009
Xia, Y., Bigerelle, M., Marteau, J., Mazeran, P. E., Bouvier, S. & Lost, A. (2013). Effect of surface roughness in the determination of the mechanical properties of material using nanoindentation test. Scanning, 36(1), pp. 134-149. doi: 10.1002/sca.21111
Li, Z., Herrmann, K. & Pohlenz, F. (2006). A comparative approach for calibration of the depth measuring system in a nanoindentation instrument. Measurement, 39(6), pp. 547-552. doi: 10.1016/j.measurement.2005.12.010
Qiu, W., Li, S.-L., Deng, W.-L., Gao, D. & Kang, Y.-L. (2014). Strain sensor of carbon nanotubes in microscale: from model to metrology. The Scientific World Journal, 2014, pp. 1-9. doi: 10.1155/2014/406154
Dai, L., Wang, P. & Bosnicka, K. (2009). Large scale production and metrology of vertically aligned carbon nanotube films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 27(4), pp.1071-1075. doi: 10.1116/1.3148827
Wood, J. (2004). Nanotubes light up the home. Materials Today, 7(9), p. 11. doi: 10.1016/s1369-7021(04)00383-9
Upadhyayula, V. K. K., Ghoshroy, S., Nair, V. S., Smith, G. B., Mitchell, M. C. & Deng, S., (2008). Single Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems. Research Letters in Nanotechnology, 2008, pp. 1-5. doi: 10.1155/2008/156358
Li, L., Hong, M., Schmidt, M., Zhong, M., Malshe, A., Huis in’tVeld, B. & Kovalenko, V. (2011). Laser nano manufacturing – State of the art and challenges. CIRP Ann. - Manuf. Technol, 60(2), pp. 735-755. doi: 10.1016/j.cirp.2011.05.005
Demircioglu, P. (2014). Estimation of surface topography for dental implants using advanced metrological technology and digital image processing techniques. Measurement, 48, pp. 43-53. doi: 10.1016/j.measurement.2013.10.036
Coelho, P. G., Jimbo, R., Tovar, N. & Bonfante, E. A. (2015). Osseointegration: Hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dental Materials, 31(1), pp. 37-52. doi: 10.1016/j.dental.2014.10.007
Kaur, A., Kaur, M. A. & Shahi, M. N. (2012). How nanotechnology works in medicine. International Journal of Electronics and Computer Science Engineering, 1(4), pp. 2452-2459.
Chakarvarty, G. (2013). Nanoparticles & Nanotechnology: Clinical, Toxicological, Social, Regulatory & other aspects of Nanotechnology. Journal of Drug Delivery and Therapeutics, 3(4), pp. 138-141.
Sousa, C., Sequeira, D., Kolen’ko, Y. V, Pinto, I. M. & Petrovykh, D. Y. (2015). Analytical Protocols for Separation and Electron Microscopy of Nanoparticles Interacting with Bacterial Cells. Analytical Chemistry, 87(9), pp. 4641-4648. doi: 10.1021/ac503835a
Wohlleben, W. (2012). Validity range of centrifuges for the regulation of nanomaterials: from classification to as-tested coronas. J. Nanoparticle Res, 14(12), pp. 1-18. doi: 10.1007/s11051-012-1300-z
Braun, A., Kestens, V., Franks, K., Roebben, G., Lamberty, A. & Linsinger, T. (2012). A new certified reference material for size analysis of nanoparticles. J. Nanoparticle Res, 14(9), pp. 1-12. doi: 10.1007/s11051-012-1021-3
Calzolai, L., Gilliland, D. & Rossi, F. (2012). Measuring nanoparticles size distribution in food and consumer products: a review. Food Additives & Contaminants: Part A, 29(8), pp. 1183-1193. doi: 10.1080/19440049.2012.689777
Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J. & Hussain, S. M. (2008). Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicological Sciences, 101(2), pp. 239-253. doi: 10.1093/toxsci/kfm240
Mihindukulasuriya, S. D. F. & Lim, L.-T. (2014). Nanotechnology development in food packaging: A review. Trends Food Sci. Technol, 40(2), pp. 149-167. doi: 10.1016/j.tifs.2014.09.009
Handford, C. E., Dean, M., Henchion, M., Spence, M., Elliott, C. T. & Campbell, K. (2014). Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends Food Sci. Technol, 40(2), pp. 226-241. doi: 10.1016/j.tifs.2014.09.007
Rossi, M., Cubadda, F., Dini, L., Terranova, M. L., Aureli, F., Sorbo, A. & Passeri, D. (2014). Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci. Technol, 40(2), pp. 127-148. doi: 10.1016/j.tifs.2014.09.004
Dudkiewicz, A., Tiede, K., Loeschner, K., Jensen, L. H. S., Jensen, E., Wierzbicki, R., Boxall, A. B. A. & Molhave, K. (2011). Characterization of nanomaterials in food by electron microscopy. Trac Trends Anal. Chem, 30(1), pp. 28-43. doi: 10.1016/j.trac.2010.10.007
Linsinger, T. P. J., Chaudhry, Q., Dehalu, V., Delahaut, P., Dudkiewicz, A., Grombe, R., von der Kammer, F., Larsen, E. H., Legros, S., Loeschner, K., Peters, R., Ramsch, R., Roebben, G., Tiede, K. & Weigel, S. (2013). Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chemistry, 138(2-3), pp. 1959-66. doi: 10.1016/j.foodchem.2012.11.074
Dudkiewicz, A., Boxall, A. B. A., Chaudhry, Q., Mølhave, K., Tiede, K., Hofmann, P. & Linsinger, T. P. J. (2015). Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods. Food Chemistry, 176, pp. 472-479. doi: 10.1016/j.foodchem.2014.12.071
Grombe, R., Charoud Got, J., Emteborg, H., Linsinger, T. P. J., Seghers, J., Wagner, S., von der Kammer, F., Hofmann, T., Dudkiewicz, A., Llinás, M., Solans, C., Lehner, A. & Allmaier, G. (2014). Production of reference materials for the detection and size determination of silica nanoparticles in tomato soup. Anal. Bioanal. Chem, 406(16), pp. 3895-3907. doi: 10.1007/s00216-013-7554-1
Henao-Duque, S. M. (2010). Nanotecnología. J. Cienc. e Ing., 2(2), pp. 7-14.
Zuluaga-Vidal, D. (2007). Informe de vigilancia tecnológica: métodos de fabricación de nanotecnología. Bogotá. Colciencias, pp. 33-92.
Pontificia Universidad Javeriana. (2016). Nanociencia y Nanotecnología. En: http://ingenieria.javeriana.edu.co/investigacion/grupos-investigacion/naciencia-natecno (26 febrero de 2016).
Colciencias. Plataforma ScienTI-Colombia Colciencias. (2016). En: http://www.colciencias.gov.co/scienti (11 mayo del 2016).
Ruta N. Ruta N nanotecnología. En: http://rutanmedellin.org/es/noticias/tag/nanotecnolog%C3%ADa (11 de mayo de 2016).
Méndez-Naranjo, K. C., Caicedo Palacios, M. L., Bedoya Correa, S. M., Ríos Mesa, A., Zuluaga Gallego, R. & Giraldo Ramírez, D. P. (2014). Tendencias investigativas de la nanotecnología en empaques y envases para alimentos. Rev. Lasallista Investig, 11(2), pp. 18-28.
Manrique, H. (2009). Aplicación de nanotecnología en la industria textil colombiana. Revista Virtual Pro, 11(2), pp. 18-28.
Rednano Colombia. (2014). Gaceta Informativa, Vol 1. En: http://rednanocolombia.org/gaceta04.htm (26 febrero de 2016).
Rednano Colombia. (2015). Gaceta Informativa, Vol 2. En: http://rednanocolombia.org/gaceta1 03.htm (26 febrero de 2016).