Caracterización y procesamiento de roca fosfatada como materia prima para uso potencial como biomateriales

Palabras clave: roca fosfórica, caracterización minera, procesamiento hidrometalúrgico, diversificación de productos, biomateriales

Resumen

El 75% de la roca fosfórica extraída se destina a la producción de ácido fosfórico, pero en el proceso de lixiviación también es posible disolver compuestos de calcio, permitiendo obtener iones de fósforo y calcio en la solución resultante. El presente trabajo se centró en la aplicación de procesos hidrometalúrgicos directamente a la roca fosfórica para la obtención de fosfatos de calcio
con potencial aplicación para fabricación de biomateriales. Luego de una caracterización fisicoquímica de 4 muestras de roca fosfórica, una muestra de roca fosfórica fue sometida a un proceso hidrometalúrgico con ácido nítrico. El lixiviado se neutralizó con hidróxido de sodio a pH entre 4.5 y 12. Una muestra del precipitado se secó a temperatura ambiente y la otra a 70°C. Con este proceso, dependiendo del pH y la relación molar Ca/P se obtuvo tres tipos de fosfatos de calcio. A través de la difracción de rayos X se identificaron que las tres fases eran fosfato octacálcico, hidroxiapatita y monetita, las cuales son reconocidas como biomateriales.

Biografía del autor/a

Gloria Soto Calle, Universidad Nacional de Colombia

Ingeniera de Minas y Metalurgia, Universidad Nacional de Colombia. Facultad de Minas. Instituto de Minerales – CIMEX. Medellín, Colombia.

Nestor Ricardo Rojas Reyes, Universidad Nacional de Colombia

Ph. D. in Engineering, Master's in Engineering, Metallurgical Engineer, Mineral Institute – CIMEX, Medellín, Colombia. Universidad Nacional de Colombia, Medellín, Colombia.

Adrián Gómez Zapata, Universitaria Pascual Bravo

Doctor en Ingeniería, Magister en Ingeniería, Ingeniero en Instrumentación y Control, Institución Universitaria Pascual Bravo. Facultad de Ingeniería. Medellín, Colombia.

Sandra Díaz Bello, Universidad Santo Tomás

Doctora en Ingeniería, Magister en Ingeniería, Ingeniera en Metalurgia, Universidad Santo Tomás Seccional Tunja- Grupo de investigación en ciencias ambientales y naturales- GICAN, Tunja, Colombia.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Gloria Soto Calle, Universidad Nacional de Colombia

Ingeniera de Minas y Metalurgia, Universidad Nacional de Colombia. Facultad de Minas. Instituto de Minerales – CIMEX. Medellín, Colombia.

Nestor Ricardo Rojas Reyes, Universidad Nacional de Colombia

Ph. D. in Engineering, Master's in Engineering, Metallurgical Engineer, Mineral Institute – CIMEX, Medellín, Colombia. Universidad Nacional de Colombia, Medellín, Colombia.

Adrián Gómez Zapata, Universitaria Pascual Bravo

Doctor en Ingeniería, Magister en Ingeniería, Ingeniero en Instrumentación y Control, Institución Universitaria Pascual Bravo. Facultad de Ingeniería. Medellín, Colombia.

Sandra Díaz Bello, Universidad Santo Tomás

Doctora en Ingeniería, Magister en Ingeniería, Ingeniera en Metalurgia, Universidad Santo Tomás Seccional Tunja- Grupo de investigación en ciencias ambientales y naturales- GICAN, Tunja, Colombia.

Referencias bibliográficas

A. Carlos & A. Herrera, “Fosfatos de cálcio de interesse biológico: importância como biomateriais, propriedades e métodos de obtenção de recobrimentos,” Química Nova, vol. 36, no. 6, pp. 1352-1358, 2010. https://doi.org/10.1590/S0100-40422010000600025

L. Medvecky, R. Stulajterova, M. Giretova, T. Sopcak & V. Girman, “Reinforcement of hydroxyapatite ceramics by soaking green samples of tetracalcium phosphate / monetite mixture in aqueous solutions,” Ceramics International, vol. 48, no. 12, pp. 17776–17788, 2022. https://doi.org/10.1016/j.ceramint.2022.03.048

A. Garrido-Hernández, G. García-Domínguez, J. Reyes-Miranda, M.A. Camacho-González, L. Chávez-Güitrón & J.M. Castillo-Minjárez, (2022). “Evaluación de la citotoxicidad de fosfatos de calcio sintetizados a diferentes relaciones molares de Ca/P por la vía hidrotermal,” Pädi Boletín Científico de Ciencias Básicas e Ingenierías Del ICBI, vol. 10, (Especial7), pp. 183–188, 2022. https://doi.org/10.29057/icbi.v10iespecial7.9957A

F. Tamimi, Z. Sheikh & J. Barralet, “Dicalcium phosphate cements: Brushite and monetite,” Acta Biomaterialia, vol. 8, no. 2, pp. 474–487, 2012. https://doi.org/10.1016/j.actbio.2011.08.005

[H.B. Shang, F. Chen, J. Wu, C. Qi, B.Q. Lu, X. Chen & Y.J. Zhu, “Multifunctional biodegradable terbium-doped calcium phosphate nanoparticles: facile preparation, pH-sensitive drug release and in vitro bioimaging,” RSC Journals, vol. 4, pp. 53122-53129, 2014. https://doi.org/10.1039/C4RA09902H

L.N. Castro & R.J. Melgar, R. Minerales para la Agricultura en Latinoamérica. Capítulo III Fosfatos, Rocas Fosfóricas. Argentina, CYTED, 2005, pp. 37-82. http://fosfatos.gl.fcen.uba.ar/index.php/bibliografia-de-consulta/

C. Avşar & A.O. Gezerman, “An evaluation of phosphogypsum (PG)-derived nanohydroxyapatite (HAP) synthesis methods and waste management as a phosphorus source in the agricultural industry,” Medziagotyra, vol. 29, no. 2, pp. 247–254, 2023. https://doi.org/10.5755/j02.ms.31695

I. Bouchkira, A.M. Latifi, L. Khamar & S. Benjelloun, “Modeling and multi-objective optimization of the digestion tank of an industrial process for manufacturing phosphoric acid by wet process,” Computers and Chemical Engineering, vol. 156, 2022. https://doi.org/10.1016/j.compchemeng.2021.107536

N.M. Espinel Pérez, “Synthesis of thermophosphate fertilizers by a plasma torch,” Organic Fertilizers - New Advances and Applications, Mar. 28, 2023. https://www.intechopen.com/chapters/1129979

U. Ryszko, P. Rusek & D. Kołodyńska, “Quality of phosphate rocks from various deposits used in wet phosphoric acid and P-fertilizer production,” Materials, vol. 16, no. 2, 2023. https://doi.org/10.3390/ma16020793

G. Martínez, N. Rojas, R. Terraza, C. Martín, & S. Rojas, “Geological mapping for phosphate in the central region of the Eastern Cordillera, Department of Boyacá, Colombia,” Boletín Geológico, vol. 50, no. 1, 2023. https://doi.org/10.32685/0120-1425/bol.geol.50.1.2023.666

J.C. Hughes & R.J. Gilkes, “The effect of chemical extractant on the estimation of rock phosphate fertilizer dissolution,” Australian Journal of Soil Research, vol. 22, no. 4, pp. 475 – 481, 1984. https://doi.org/10.1071/SR9840475

Z. Benredjem, R. Delimi, “Use of extracting agent for decadmiation of phosphate rock,” Physics Procedia, vol. 2, no. 3, pp. 1455-1460, 2009. https://doi.org/10.1016/j.phpro.2009.11.116

F. Habashi, “Solvent extraction in the phosphate fertilizer industry,” EPD Congress, The Minerals, Metals & Materials Society, pp. 201-218, 1998. https://www.researchgate.net/profile/Fathi-Habashi/publication/233389507_Solvent_extn_phosphate_ind/links/09e4150a1192a3cce8000000/Solvent-extn-phosphate-ind.pdf

P. K. Ghosal & T. Chakraborty, “Comparative solubility study of four phosphatic fertilizers in different solvents and the effect of soil,” Resources and Environment, vol. 2, no. 4, pp. 175-179, 2012. http://article.sapub.org/10.5923.j.re.20120204.07.html

N.S. Bolan, & M.J. Hedley, “Dissolution of phosphate rocks in soils. 1. Evaluation of extraction methods for the measurement of phosphate rock dissolution,”. Fertilizer Research, vol. 19, pp. 65–75, 1989. https://doi.org/10.1007/BF01054677

S. Wu, L. Wang, L. Zhao, P. Zhang, H. El-Shall, B. Moudgil, X. Huang & L. Zhang, “Recovery of rare earth elements from phosphate rock by hydrometallurgical processes – A critical review, Chemical Engineering Journal, vol. 335, pp. 774-800, 2018. https://doi.org/10.1016/j.cej.2017.10.143.

M. Chen & T.E. Graedel, “The potential for mining trace elements from phosphate rock,” Journal of Cleaner Production, vol. 91, no. 337-346, 2015. https://doi.org/10.1016/j.jclepro.2014.12.042;

N.A. Khaledi, M. Taha, A. Hussein, E. Hussein, A.E. Yahyaoui & N. Haneklaus, “Direct leaching of rare earth elements and uranium from phosphate rocks,” Materials Science and Engineering, vol. 479, pp. The 3rd International Conference on New Material and Chemical Industry 17–19 November 2018, Sanya, China, 2019.https://iopscience.iop.org/article/10.1088/1757-899X/479/1/012065

F. Habashi, “Hydrometallurgy of phosphate rock and the recovery of uranium,” Uranium: Sources, Exposure and Environmental Effects, Chapter 5, Nova Science Publishers, Inc., 2015. Available at: https://works.bepress.com/fathi_habashi/155/

G. Xie, Q. Guan, F. Zhou, W. Yu, Z. Yin, H. Tang, Z. Zhang & R.A. Chi, “Critical review of the enhanced recovery of rare earth elements from phosphogypsum. Molecules, vol. 28, no. 17, pp.6284, 2023. https://doi.org/10.3390/molecules28176284

H.K. Hapuhinna, R.D. Gunaratne, & H.M. Pitawala, "Development of a biomaterial from naturally occurring chloroapatite mineral for biomedical applications ", International Scholarly and Scientific Research & Innovation, vol. 12, no. 8, 2018. http://dr.lib.sjp.ac.lk/handle/123456789/9974

S. Brahimi, A. Ressler, K. Boumchedda, M. Hamidouche, A. Kenzour, R. Djafar, M. Antunović, L. Bauer, P. Hvizdoš & H. Ivanković, “Preparation and characterization of biocomposites based on chitosan and biomimetic hydroxyapatite derived from natural phosphate rocks, Materials Chemistry and Physics, vol. 276, pp. 125421, 2022. https://doi.org/10.1016/j.matchemphys.2021.125421.

R. Kareem, N. Bulut, & O. Kaygili, O. “Hydroxyapatite biomaterials: a comprehensive review of their properties, structures, medical applications, and fabrication methods. Journal of Chemical Reviews, vol. 6, no. 1, pp. 1-26, 2024.https://www.jchemrev.com/article_179475.html

A. Patel, S. Namjoshi, S. Kumar, “Comparative experimental investigation of simple and V-shaped rib solar air heater,” International Journal of All Research Education and Scientific Methods, vol. 11, no. 6, pp. 2993–2999, https://www.ijaresm.com/comparative-experimental-investigation-of-simple-and-v-shaped-rib-solar-air-heater

M. J. Anderson, “Simple-comparative experiments done right,” Journal of Plastic Film and Sheeting, vol. 40 no. 4, pp.334–337, 2024.https://journals.sagepub.com/doi/10.1177/87560879241286598

G. Soto-Calle, A. Gómez-Zapata, N. Rojas-Reyes, and S. Díaz-Bello. “Production of hydroxyapatite from phosphoric rock”, DYNA, vol. 91, no. 234, pp. 9-15, 2024. DOI: https://doi.org/10.15446/dyna.v91n234.113354

B. Messai, I. Taieb, S. Ben Younes, B. Lartiges, E. Ben Salem & A. Ellafi. “Characterization of the Tunisian phosphate rock from Metlaoui-Gafsa basin and bio-leaching assays,” Sustainability, vol. 15, pp. 7204, 2023. https://doi.org/10.3390/su15097204

S. Nazarbekova, U. Nazarbek, P. Abdurazova & Y. Raiymbekov, “Study of solubility in the systems СаО-Р2О5-SО3-Н2О and СаО-Р2О5-Н2О on the example of sulfuric-acid and phosphoric-acid decomposition of phosphoric slag. AIP Conference Proceedings, 2650, 020007, 2022. https://doi.org/10.1063/5.0107418

H. Toama, A.W. Al-Ajeel & H. Waheeb, “Beneficiation of Akashat phosphate rocks by flotation process,” Engineering and Technology Journal, vol. 33(A), no. 9, pp. 2255-2268, 2015. https://etj.uotechnology.edu.iq/article_116247.html

A. Rasulov, S. Namazov & B. Sultonov, “Nitrogen-phosphate fertilizers based on activation of phosphorite powder with partially ammoniated mix of phosphoric and sulphuric acids,” Chemical Science International Journal, vol. 29, no. 9, pp. 1-10, 2020.https://journalcsij.com/index.php/CSIJ/article/view/724

A. Chaabouni, C. Chtara, A. Nzihou, & H.E. Feki, “Study the nature and the effects of the impurities of phosphate rock in the plants of production of phosphoric acid,” Journal of Advances in Chemistry, vol. 7, no. 2, pp. 1296–1299, 2008. https://doi.org/10.24297/jac.v7i2.5560

P. Comodi, Y. Liu & M. Frezzotti, “Structural and vibrational behaviour of fluorapatite with pressure. Part II: in situ micro-Raman spectroscopic investigation,” Physics and Chemistry of Minerals, vol. 28, pp. 225–231, 2001. https://doi.org/10.1007/s002690100155

K. Litasov & N. Podgornykh, “Raman Spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite,” Journal of Raman Spectroscopy, 2017. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jrs.5119

A. Antonakos, E. Liarokapis & T. Leventouri, “Micro Raman and FTIR studies of synthetic and natural apatites,” Biomaterials, vol. 28, pp. 3043–3054, 2007. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jrs.5119

H. Van Olphen & J. Fripiat, Data Handbook for Clay Materials and Other Non-Metallic Minerals. Pergamon Press, Oxford. 1979.

B. Peng, X. Li, S. Xiang, L. Lei, M. Yang, L. Zhu & Y. Qi, “Release behavior of iodine during leaching and calcination of phosphate rock,” Environmental Science and Pollution Research, vol. 28, pp. 31059–31070, 2021. https://doi.org/10.1007/s11356-021-12895-w

K. Tõnsuaadu, K.A. Gross, L. Plūduma, & M. Veiderma, “A review on the thermal stability of calcium apatites,” Journal of Thermal Analysis and Calorimetry, vol. 110, pp. 647–659, 2012. https://doi.org/10.1007/s10973-011-1877-y

X.G. Li, Y. Lv, B.G. Ma, W.Q. Wang & S.W. Jian, “Decomposition kinetic characteristics of calcium carbonate containing organic acids by TGA,” Arabian Journal of Chemistry, vol. 10, sp. 2, pp. S2534-S2538, 2017. https://doi.org/10.1016/j.arabjc.2013.09.026.

V. Stanić, A. Radosavljević-Mihajlović, V. Živković-Radovanović, B. Nastasijević, M. Marinović-Cincović, J. Marković & M. Budimir, “Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method,” Applied Surface Science, vol. 337, pp. 72–80, 2015. http://dx.doi.org/10.1016/j.apsusc.2015.02.065

O. Suzuki, Y. Shiwaku, R. Hamai, “Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials,” Dental Materials Journal, vol. 39, no. 2, pp. 187-199, 2020. DOI: https://doi.org/10.4012/dmj.2020-001

B. Ghiasi, Y. Sefidbakht, S, Mozaffari-Jovin, B. Gharehcheloo, M. Mehrarya, A. Khodadadi and V. Uskoković, “Hydroxyapatite

as a biomaterial – a gift that keeps on giving,” Drug Development and Industrial Pharmacy, vol. 46, no. 7, pp. 1035–1062. 2020. DOI: https://doi.org/10.1080/03639045.2020.1776321

S. Mondal, S. Park, J. Choi, T. T. Ha-Vu, V. H. Minh-Doan, T. T. Vo, B. Lee, J. Oh, “Hydroxyapatite: A journey from biomaterials to advanced functional materials,” Advances in colloid and interface science, vol. 321, pp. 103013, 2023. https://doi.org/10.1016/j.cis.2023.103013

Z. Wang, Q. Li., S. Ren, H. Zhang, J. Chen, A. Li, and Y. Chen, “Composite monetite/amorphous calcium phosphate bone cement promotes bone regeneration”. Ceramics International, 49(5), 7888–7904. 2024 DOI: https://doi.org/10.1016/j.ceramint.2022.10.296

H. Yuan, & K. de Groot, “Calcium phosphate biomaterials: an overview,” Learning from Nature How to Design New Implantable Biomaterialsis: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes. NATO Science Series II: Mathematics, Physics and Chemistry, vol 171. Springer, Dordrecht. 2004. https://doi.org/10.1007/1-4020-2648-X_3

L. Chow, “Next generation calcium phosphate-based biomaterials,” Dental Materials Journal, vol. 28, no. 1, pp. 1-10, 2009.https://pubmed.ncbi.nlm.nih.gov/19280963/

J. Jeong, J.H. Kim, J.H. Shim, N.S. Hwang & C.Y. Heo, “Bioactive calcium phosphate materials and applications in bone regeneration,” Biomaterials Research, vol. 23, no. 4, 2019. https://doi.org/10.1186/s40824-018-0149-3

X. Hou, L. Zhang, Z. Zhou, X. Luo, T. Wang, X. Zhao, B. Lu, F. Chen & L. Zheng, “Calcium phosphate-based biomaterials for bone repair,” Journal of Functional Biomaterials, vol. 13, no. 4, pp. 187, 2022. https://pmc.ncbi.nlm.nih.gov/articles/PMC9589993/

Cómo citar
Soto Calle, G., Rojas Reyes, N. R., Gómez Zapata, A., & Díaz Bello, S. (2025). Caracterización y procesamiento de roca fosfatada como materia prima para uso potencial como biomateriales. Ciencia E Ingeniería Neogranadina, 35(1), 11–24. https://doi.org/10.18359/rcin.7311
Publicado
2025-04-11
Sección
Artículos