Evaluación del diseño de una pequeña mesa vibratoria para ensayos en ingeniería sismo-resistente
Resumen
Las consecuencias catastróficas de los sismos han incentivado la realización de estudios experimentales para mitigar los efectos de los sismos sobre las estructuras. En el artículo se presenta la evaluación de los diseños mecánico, neumático, estructural, de control y de adquisición de datos, de una pequeña mesa vibratoria uniaxial para ensayos de estructuras a escala reducida. Inicialmente se eligieron los elementos mecánicos que permiten el movimiento de la mesa. Luego se validó el desempeño del sistema a partir de herramientas de simulación. Finalmente se estudió la automatización de la mesa por medio de un control con sistema de lazo abierto, implementado en un micro-controlador. La mesa vibratoria propuesta es una herramienta versátil y económica para realizar pruebas experimentales orientadas al análisis y diseño de estructuras sometidas a eventos sísmicos. El dispositivo propuesto promoverá la investigación no sólo en nuevos materiales, sino en diseño y rehabilitación de viviendas, edificios y puentes sismo-resistentes.Descargas
Referencias bibliográficas
Emergency Committee. (2012). Haiti Earthquake Facts and Figures. Consultada en marzo de 2012. En: www.dec.org.uk/haiti-earthquake-facts-and-figures.
Vargas C., Nieto M., Monsalve H., Montes L. y Valdes M. (2008). The Abaníco del Quindío alluvial fan, Armenia, Colombia: Active tectonics and earthquake hazard; En: Journal of South American Earth Sciences, Vol. 25(1), pp. 64-73. http://dx.doi.org/10.1016/j.jsames.2006.06.001
Ozaki M. y Hayashi S. (1978). Earthquake resistant design of offshore building structures; En: IEEE Journal of Oceanic Engineering, Vol. 3(1), pp. 152-162. http://dx.doi.org/10.1109/JOE.1978.1145407
Sarria A., (1995). Ingeniería sísmica. Bogotá, Colombia. Ediciones Uniandes y Ecoe Ediciones, 56-120 p.
Latchman S. (2009), Modeling catastrophes; En: Plus magazine, Vol. 53.
Zafarani H., Noorzad A., Ansari A. y Bargi K. (2009). Stochastic modeling of Iranian earthquakes and estimation of ground motion for future earthquakes in Greater Theran; En: Soil Dynamics and Earthquake Engineering, Vol. 29(4), pp. 722-741. http://dx.doi.org/10.1016/j.soildyn.2008.08.002
Marazzi F. y Tirelli D. (2010). Combating earthquakes: design and testing anti-seismic building; En: Science in School, Vol. 15, pp. 55-59.
Moreno N. (2011). Estructuración de la Norma sismo resistente 2010 – NSR – 10 basada en el modelo de estados límite de dise-o. En: Latin American and Caribbean Conference for Engineering and Technology. Medellin, Colombia, Corporación Universitaria de la Costa, CUC.
Trombetti T. y Conte J. (2002). Shaking table dynamics: result from a test-analysis comparison study; En: Journal of Earthquake Engineering, Vol. 6, pp. 513-551. http://dx.doi.org/10.1080/13632460209350428
Carrillo J. y Alcocer S. (2012). Experimental investigation on dynamic and quasi-static behavior of low-rise RC walls; En: Earthquake Engineering and Structural Dynamics. DOI: 10.1002/eqe.2234. http://dx.doi.org/10.1002/eqe.2234
Severn R., Stoten D. y Tagawa. (2012), The Contribution of Shaking Tables to Earthquake Engineering; En: 15th World Conference On Earthquake Engineering. Lisboa, Portugal.
Baran T., Tanrikulu A., Dundar C. y Tanritulu A. (2011). Construction and performance test of a low-cost shake table; En: Experimental Techniques, Vol. 35, No. 4, pp. 8–16. http://dx.doi.org/10.1111/j.1747-1567.2010.00631.x
Severn R. (2011). An assessment of the use and value of shaking tables; En: Experimental Vibration Analysis for Civil Engineering Structures. Varenna, Italia.
Carrillo J. y Alcocer S. (2011). Improved external device for a mass- carrying sliding system for shaking table testing; En: Earthquake Engineering & Structural Dynamics, Vol. 40, pp.393–411. http://dx.doi.org/10.1002/eqe.1026
Xilin L. (1995). Application of identification methodology to shaking table test on reinforced concrete columns; En: Engineering Structures, Vol. 17, pp. 505-511. http://dx.doi.org/10.1016/0141-0296(95)00053-A
O'Hagan J. y Ma Q. (2012). Experimental assessment of PID control for a uniaxial shake table; En: 15th World Conference On Earthquake Engineering. Lisboa, Portugal.
Anastasopoulos I., Georgarakos T., Georgiannou V., Drosos V. y Kourkoulis R. (2010). Seismic performance of bar-mat reinforced-soil retaining wall: Shaking table testing versus numerical analysis with modified kinematic hardening constitutive model; En: Soil Dynamics and Earthquake Engineering, Vol. 30(10), pp. 1089-1105. http://dx.doi.org/10.1016/j.soildyn.2010.04.020
Tashkov L., Krstevska L., Safak E., Cakti E., Edincliler A. y Erdik M. (2012), Comparative Study of Large and Medium Scale Mosque Models Tested on Seismic Shaking Table; En: 15th World Conference On Earthquake Engineering. Lisboa, Portugal.
Ingeominas: Servicio Geológico Colombiano. (2012). Mapa de Amenaza sísmica y Valores de Aa de Colombia. Consultada en febrero del 2012. En: www.seisan.ingeominas.gov.co.
Muhlenkamp M. (1997). Analysis, design y construction of a shaking table facility; Houston, 114p. Trabajo de grado (Master in Sciences). Rice University.
Martin L. y Mu-oz R. (2005). Dise-o de una mesa vibratoria de un grado de libertad para simulación de sismos; Bogotá, 121 p. Trabajo de Grado (Ingeniero en Mecatrónica). Facultad de Ingeniería, Universidad Militar Nueva Granada.
ASTM. (2011). Standard Specification for Carbon Steel Forgings for Piping Applications, ASTM A105.
Danaher Motion. (Agosto 2004), Advance linear motion metric components. Vol. 1, pp. 22-31.
Idrobo L, Pati-o M., Racedo F., Dorado P, Escobar P, (2006). Dise-o y construcción de un riel de aire automatizado para el estudio del movimiento utilizando sensores magnéticos; En: Revista de la Sociedad Colombiana de Física, Vol. 38, pp. 695-698.
Uribe Escamilla J, Barbosa Jerez R, Pérez Ruiz P, Saavedra Quiroga P, Báiz Cueto M y Moreno Garzón J. (2006), Dise-o y fabricación de mesas vibratorias para el estudio del comportamiento dinámico de modelos estructurales a escala reducida; En: Revista De La Escuela Colombiana de Ingeniería, Vol. 64, pp. 13-20.
ACI Comité 351 (2004). Foundations for Dynamic Equipment. American Concrete Institute, ACI. Farmintong Hills, EE.UU., 63 pp.
Asociación Colombiana de Ingeniería Sísmica. (2010). Reglamento Colombiano de Construcción Sismo Resistente de 2010, NSR-10. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Capitulo A.13.
Alcaldía Mayor de Bogotá. "Decreto N° 523: Microzonificación sísmica de Bogotá D.C". Bogotá, Colombia. 16 de diciembre de 2010.
Díaz A. (2013). Cimentación Mesa Vibratoria - Laboratorio de Ingeniería de la Universidad Militar Nueva Granada. Memorias de cálculo estructural. Bogotá, Colombia.
Conte J. y Trombetti T. (2000). Linear dynamic modeling of a uni-axial servo-hydraulic shaking table system; En: Earthquake Engineering & Structural Dynamics, Vol. 29, pp. 1375-1404. http://dx.doi.org/10.1002/1096-9845(200009)29:9<1375::AID-EQE975>3.0.CO;2-3
Y. Xu, H. Hua y J. Han. (2007). Modeling a controller design of a shaking table in an active structural control system; En: Mechanical Systems and Signal Processing Vol. 22, pp. 1917-1922. http://dx.doi.org/10.1016/j.ymssp.2008.02.003
Crewe A. y Severn R. (2001). The European collaborative program on evaluating the performance of shakin