Double Logic DL and Existential Graphs Gamma-DL
Abstract
In this paper, the deductive system for double propositional logic (DL) and gamma-DL
existential graphs are presented. It rigorously proves the consistency of the DL and that the DL theorems
correspond exactly to the valid existential graphs of gamma-DL. When the language of DL is
restricted to the language of classical propositional logic (CL), the restriction associated with gamma-
DL coincides with the valid existential graphs of Charles Sanders Peirce’s alpha system. It turns out
that intuitionistic propositional logic (IL) theorems are DL theorems; furthermore, when the language
of DL is restricted to the language of IL, the restriction associated with gamma-DL coincides with the
valid existential graphs of Arnold Oostra’s intuitionistic alpha system. As a consequence, it is inferred
that gamma-LD has as particular cases, the alpha existential graphs of LC and LI. Finally, in DL, the
Aristotelian definitions of truth and falsity are derived, with which the ability of DL to solve a version
of the liar paradox, where LC and LI fail, is illustrated.
Downloads
References
D. Roberts, “The existential graphs”, Computters Math. Applic, vol. 23, n.° 6-9, pp. 639-663, 1992.
Y. Poveda, “Los gráficos existenciales de Peirce en los sistemas alfa-0 y alfa-00”, Boletín de Matemáticas, vol.2, n.° 1, pp. 5-17, 2000.
A. Oostra, “Los gráficos alfa de Peirce aplicados a la lógica intuicionista”, Cuadernos de Sistemática Peirceana, n.° 2. pp. 25-60, 2010.
Aristóteles. Metafísica Libro 4. Madrid: Gredos, 1998.
I. Bochenski. Historia de la lógica formal. Madrid: Gredos, 1976.
R. Smullyan. Como se llama este libro. Madrid: Catedra, 1997.
X. Caicedo. Elementos de lógica y calculabilidad. Bogotá: Universidad de los Andes, 1990.
A. Hamilton. Lógica para matemáticos. Madrid: Paraninfo, 1981.
C. S. Peirce. Reasoning and the Logic of Things. Cambridge: Harvard University Press, 1992.
A. Heyting. Intuitionism. An Introduction (Studies in Logic and the Foundations of Mathematics). Amsterdam: North-holland Publishing Company, 1956.
D. Van Dalen. Logic and Structure. London: Springer-Verlag, 2013. DOI: https://doi.org/10.1007/978-1-4471-4558-5
Platon, “Cratilo”, en Diálogos, vol. II, traducción y notas por J. L Calvo, Madrid: Gredos, 1983, pp. 39ss.
M. Sierra-Aristizábal, “Sistema paraconsistente y paracompleto LBPcPo”, Revista Universidad Eafit, vol. 43, n.° 148, pp. 91-112, 2007.
M. Sierra-Aristizábal. Lógica básica para la verdad Aristotélica. Medellín: Fondo Editorial Universidad
Eafit, 2010.
M. Sierra-Aristizábal. “Lógica básica para la verdad y la falsedad”, Revista Ingeniería y Ciencia, vol. 3, n.°6, pp. 135-171, 2007.
M. Sierra-Aristizábal, “Lógica de las tautologías”, Revista Ingeniería y Ciencia, vol. 8, n.° 15, pp. 97-119,2012. DOI: https://doi.org/10.17230/ingciencia.8.15.5
Copyright (c) 2023 Revista Facultad de Ciencias Básicas

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.