Magnetostatic Analogy of the Jackiw-Rebbi Zero Energy State

Keywords: analogy, quantum mechanics, Jackiw-Rebbi model, magnetostatic theory, transformation

Abstract

A theoretical analogy is established between Poisson’s equation and Dirac’s equation; specifically, when studying the behavior of the magnetostatic field, due to the susceptibility in non- homogeneous, non-isotropic, one-dimensional media with high magnetic permeability. As a result, a connection with the Jackiw-Rebbi model for the zero energy state was found.

Author Biography

Robert Augusto Rubiano Giraldo, Universidade Federal de Campina Grande

Físico. Programa de Posgrado en Física, João Pessoa, Brasil.
Correo electrónico: robert.rubiano@academico.ufpb.br ORCID: https://orcid.org/0000-0003-3534-7832

Downloads

Download data is not yet available.

Author Biography

Robert Augusto Rubiano Giraldo, Universidade Federal de Campina Grande

Físico. Programa de Posgrado en Física, João Pessoa, Brasil.
Correo electrónico: robert.rubiano@academico.ufpb.br ORCID: https://orcid.org/0000-0003-3534-7832

References

G. González, "Relation between Poisson and Schrödinger equations", American Journal of Physics, vol. 80, n.° 8, pp. 715-719, 2012. https://doi.org/10.1119/1.4722788

R. A. Rubiano, J. Tapia y H. González, "Dual solutions Schrödinger type for Poisson equation", Journal de Ciencia e Ingeniería, vol. 12, n.° 1, pp. 151-165, 2020. https://doi.org/10.46571/JCI.2020.1.14

V. Rokaj, F. Diakonos y G. Gabriel, "Comment on and erratum. Relation between Poisson and Schrödinger equations", American Journal of Physics, vol. 82, n.° 8, pp. 802-803, 2014. https://doi.org/10.1119/1.4884037

G. González, J. Méndez, R. Díaz y F. J. Gonzalez, "Electrostatic simulation of the Jackiw-Rebbi zero energy state", Revista Mexicana de Física E, vol. 65, n.° 1, pp. 30-33, 2019. https://doi.org/10.31349/RevMexFisE.65.30

M. A. Miri, M. Heinrich, R. El-Ganainy y D. N. Chris-todoulides, "Supersymmetric optical structures", Physical Review Letters, vol. 110, n.° 23, pp. 23-902, 2013. https://doi.org/10.1103/PhysRevLett.110.233902

M. Mohammad-Ali, H. Matthias, E. G. Ramy y C. Demetrios N., "Photonic simulation of topological excitations in metamaterials", Scientific Reports, vol. 4, n.° 3842, pp. 1-7, 2014. https://doi.org/10.1038/srep03842

L. Lamata, J. León y E. Solano, "dirac equation and quantum relativistic effects in a single trapped ion", Physical Review Letters, vol. 98, n.° 25, p. 253005, 2007. https://doi.org/10.1103/PhysRevLett.98.253005

S. Longhi, "Classical simulation of relativistic quantum mechanics in periodic optical structures", Applied Physics B, vol. 104, n.° 3, pp. 453-468, 2011. https://doi.org/10.1007/s00340-011-4628-7

P. A. M. Dirac, "The quantum theory of the electron", The Royal Society, vol. 117, n.° 778, pp. 610-624, 1928. https://doi.org/10.1098/rspa.1928.0023

K. Novoselov et al., "Two-dimensional gas of mass- less Dirac fermions in graphene", Nature, vol. 438, n.° 7065, pp. 197-200, 2005. https://doi.org/10.1038/nature04233

M. Hasan y C. Kane, "Colloquim: Topological insulators", Reviews of Modern Physics, vol. 438, n.° 7065, pp. 197-200, 2005.

X. Qi y S. Zhang, "Topological insulators and super- conductors", Reviews of Modern Physics, vol. 83, n.° 4, pp. 1057-1110, 2011. https://doi.org/10.1103/RevModPhys.83.1057

I. Aitchison y A. Hey, "In gauge theories in particle physics. A practical introduction", en Relativistic Quantum Mechanics. Nueva York, crc Press, 2012, pp. 63-83. https://doi.org/10.1201/b13717

P. A. M. Dirac, "A theory of electrons and protons", The Royal Society, vol. 126, n.° 801, pp. 360-365, 1930. https://doi.org/10.1098/rspa.1930.0013

C. D. Anderson, "The positive electron", Physical Re- view Journals Archive, vol. 43, n.° 1, pp. 491-494, 1933. https://doi.org/10.1103/PhysRev.43.491

R. P. Feynman, "The theory of positrons", Physical Re- view Journals Archive, vol. 76, n.° 1, pp. 749-759, 1949. https://doi.org/10.1103/PhysRev.76.749

N. Stander, N. Huard y D. Goldhaber, "Evidence for Klein tunneling in graphene", Physical Review Letters, vol. 102, n.° 026807, pp. 1-4, 2009. https://doi.org/10.1103/PhysRevLett.102.026807

M. Katsnelson, "Zitterbewgung chirality, and minimal conductivity in graphene", The European Physical Journal B, vol. 51, n.° 2, pp. 157-160, 2006. https://doi.org/10.1140/epjb/e2006-00203-1

R. Jackiw y C. Rebbi, "Solitons with fermion number 1/2", Physical Review D, vol. 13, n.° 12, pp. 3398-3409, 1976. https://doi.org/10.1103/PhysRevD.13.3398

R. Rajaraman y J. Bell, "On solitons with half integral charge", Physics Letters B, vol. 883, n.° 3213, pp. 256- 266, 1982.

F. Charmchi y S. Gousheh, "Massive Jackiw-Rebbi model", Nuclear Physics B, vol. 883, n.° 3213, pp. 151- 154, 1982. https://doi.org/10.1016/j.nuclphysb.2014.03.021

A. Amado y A. Mohammadi, "Coupled fermion-kink system in Jackiw-Rebbi", The European Physical Journal C, vol. 77, n.° 7, pp. 465-475, 2017. https://doi.org/10.1140/epjc/s10052-017-5044-x

D. Bazeia y A. Mohammadi, "Fermionic bound states in distinct kinklike", The European Physical Journal C, vol. 77, n.° 1434, pp. 203-211, 2017. https://doi.org/10.1140/epjc/s10052-017-4778-9

W. Su, J. Schrieffer y A. Heeger, "Soliton exitations in polyacetylene", Physical Review B, vol. 22, n.° 4, pp. 2099-2111, 1983. https://doi.org/10.1103/PhysRevB.22.2099

D. Mcmahon, Quantum mechanics demystified, New York: McGraw-Hill Education, 2013.

L. F. Charles, P. L. James y I. W. Michael, "Topologi- cally protected states in one-dimensional continuous systems and Dirac points", PNAS, vol. 111, n.° 24, pp. 8759-8763, 2014. https://doi.org/10.1073/pnas.1407391111

K. Alexei, "Periodic table for topological insulators and superconductors", AIP Conference Proceedings, vol. 1134, n.° 1, pp. 22-30, 2009.

A. Altland y M. R. Zirnbauer, "Nonstandard sym- metry classes in mesoscopic normal-superconduc- ting hybrid structures", Phys. Rev. B, vol. 55, n.° 2, pp. 1142-1161, 1997. https://doi.org/10.1103/PhysRevB.55.1142

F. Charmchi y S. Gousheh, "Massive Jackiw-Rebbi model", Nuclear Physics B, vol. 883, n.° 3213, pp. 256- 266, 2014. https://doi.org/10.1016/j.nuclphysb.2014.03.021

M. Sadiku, Elementos de Electromagnetismo, 3.a ed. México: Oxford University Press, 2003.

I. Irodov, Basic laws of electromagnetism. Nueva Delhi: CBS Publishers & Distributiors, 1994.

J. Griffiths, Introduction to electrodynamics, 4.a ed. Nueva York: Cambridge University Press, 2017. https://doi.org/10.1017/9781108333511

A. Lenard, "Exact statistical mechanics of a one-dimensional system with Coulomb forces", Journal of Mathematical Physics, vol. 2, n.° 5, pp. 682-693, 1961. https://doi.org/10.1063/1.1703757

C. Heck, Magnetic Materials and their Applications. Londres: Butterworth-Heinemann, 1974. https://doi.org/10.1016/B978-0-408-70399-4.50015-6

E. Snelling, Soft ferrites. Properties and applications. Londres: Ilifee, 1969.

How to Cite
Rubiano Giraldo, R. A. (2021). Magnetostatic Analogy of the Jackiw-Rebbi Zero Energy State. Revista Facultad De Ciencias Básicas, 17(1), 47–56. https://doi.org/10.18359/rfcb.4992
Published
2021-11-19
Section
Artículos