Trajectory of the triple point of an unsteady shock wave reflection on a straight wall
Abstract
This is a numerical study on the trajectory of the triple point that occurs as a result of the interaction of a shock wave with variable velocity on a straight surface, generating an unsteady reflection process. The cylindrical shock wave is produced from a sudden release of energy. Numerical results are compared with pseudo-stationary theoretical results and experimental data. Simulations
are conducted using the Kurganov, Noelle, and Petrova (KNP) scheme, employing the rhoCentralFoam solver of the OpenFOAM software. A proper correlation of the obtained results with the simulation is observed, achieving a correct description of the process evolution and observing differences in the trajectory when x > 3.5 m.
Downloads
References
C. E. Needham, Blast Waves. Vol. 402, New York: Springer, 2018. https://www.researchsquare.com/article/rs-3393606/v1
G. Ben-Dor, Shock Wave Reflection Phenomena, 2nd. Ed.; Berlín: Springer, 2007.
H. Zhang, M. Zhao y Z. Huang, “Large Eddy Simu-lation Of Turbulent Supersonic Hydrogen Flames With Openfoam”, Fuel, 282, pp. 118812, 2020, https://www.preprints.org/manuscript/202312.0516/v1
P. Nielsen, “Validation Of Rhocentralfoam For Engi-neering Applications of Under-Expanded Impinging Free Jets”, The University of Western Ontario (Cana-da), 2019.
L. F. Gutiérrez Marcantoni, J. P.Tamagno y S. A. Elaskar, “HighSpeedFlowSimulationUsing Open-foa m”,MecánicaComputacional, vol. 31, no. 16, pp. 2939-2959, 2012.
L. Monaldi, L. F. GutiérrezMarcantoni y S. Elas-kar, “OpenFOA MTMSimulationoftheShockWaveReflection in Unsteady Flow”, Symmetry, vol. 14, p. 2048, 2022. https://www.mdpi.com/2073-8994/14/10/2048
L. Monaldi, L. F. Gutiérrez Marcantoni y S. Elaskar,“Reflexio ́ndeOndadeChoqueinestacionariaen2D sobre pared recta empleando OpenFOAM”, MACI, vol. 14, p. 2048, 2022.
C. M. Hung, “Definition Of Contravarinat Velocity Components”, In 3rd Theoretical Fluid Mechanics Meeting, p. 320.
A. Kurganov y E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection- diffusion equations”, J. Comput. Phys., vol. 160, pp. 241-282, 2000. https://doi.org/10.1006/jcph.2000.6459
A. Kurganov, S. Noelle y G. Petrova, “Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations”, SIAM J. SCI. Comput., Vol. 23, pp. 707-740, 2000, https://epubs.siam.org/doi/10.1137/S1064827500373413
C. Greenshields, H. Weller, H. Gasparini yJ. Reese, “Implementation of semi-discrete, non-staggered cen- tral schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows”, Int. J. Numer. Methods Fluids., vol. 63, pp. 1-21, 2010, https://onlinelibrary.wiley.com/doi/10.1002/fld.4055
L. Dixon-Hiester, R. Reisler, J. Keefer y N. Ethridge, “Shock enhancement at transition from regular to Mach reflection”, Am. Inst. Phys., vol. 208, pp. 204-209, 1990, https://pubs.aip.org/aip/acp/article-abstract/208/1/204/792665/Shock-enhancement-at-transition-from-regular-to?redirectedFrom=fulltext
H. Kleine, E. Timofeev y K. Takayama, “Reflection of blast waves from straight surfaces. In Shock Wa-ves”, Shock Waves, vol. 24, pp. 1019-1024, 2005, https://www.unsw.edu.au/staff/harald-kleine
J. Ridoux, N. Lardjane, L. Monasse y F. Coulouvrat, “Extension of geometrical shock dynamics for blast wave propagation”, Shock Waves, vol. 30, pp. 563-583, 2020, https://link.springer.com/article/10.1007/s00193-020-00954-z
D. J. Azevedo y C. S. Liu, “Engineering approach to the prediction of shock patterns in bounded hi-gh-speed flows”, AIAA, vol. 31, pp. 83-90, 1993, https://arc.aiaa.org/doi/10.2514/3.11322
L. R. Henderson y R. Menikoff, “Triple-shock en-tropy theorem and its consequences”, J. Fluid Mech., vol. 366, pp. 179-210, 1998, https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/tripleshock-entropy-theorem-and-its-consequences/49AA17932FB90B64F825F3C6A729E21F
C. A. Mouton y H. G. Hornung, “Mach stem height and growth rate predictions”, AIAA, vol.45, pp.1977-1987, 2007, https://arc.aiaa.org/doi/10.2514/1.27460
H. Hekiri y G. Emanuel, “Shock wave triple-point morphology”, Shock Waves, vol. 21, pp. 511-521, 2011,https://link.springer.com/article/10.1007/s00193-011-0339-6
T. Hu y C. J. I. Glass, “Blast wave reflection trajec-tories from a height of burst”, AIAA J., vol. 24, pp. 607-610, 1986,https://link.springer.com/article/10.1007/s00193-023-01151-4
H. Jasak, A. Jemcov y A. Tukovic, “OpenFOAM: A C++ library for complex physics simulations”, Int. Workshop Coupled Methods Numer. Dyn., vol. 1000, pp. 1-20, 2007.
L. F. GutiérrezMarcantoni, S. Elaskar, J. Tamagno,J. P. Saldia y G. Krause, “AnassessmentoftheOpen-FOAM implementation of the KNP scheme to simulate strong explosions”, Shock Waves, vol. 31, pp. 193-20, 2021, https://www.scielo.br/j/riem/a/4nhcsYyQfP3SvxFXj4q98Qf/?lang=en
Copyright (c) 2024 Revista Facultad de Ciencias Básicas

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.