Generation of Pauli Spin Matrices from Jones Vectors
Abstract
Using the states of polarization of light represented by Jones vectors that belong to a complex linear vector space of one-dimension, algebraic structures are elaborated that are known as dyads or second-order tensors that in this case make up a complex vector space of two dimensions. With these second-order tensors, which can be expressed in a matrix form, sequences of switching relations are constructed with alternating states of light polarization. The sequences of commutation relations, with the property of alternation given by the permutation of the polarization states of light, are presented as linear combinations that generate Pauli spin matrices in a simple way. The polarization states of the Jones vectors used to construct the sequences of the commutation relations of the dyadic forms belong to forms of the circular, left and right, or linear type. The transition from a complex vector space, in which the Jones vectors act, to a complex linear vector space of two dimensions, in which the base of this last space is made up of the unit matrix and the Pauli spin matrices, is feasible through commutation relations using Jones vectors in states of linear and circular polarization.
Downloads
References
L. J. Vandergriff, "Nature and Properties of Light", en Fundamentals of Photonics, Chandrasekhar Roychoudhuri. University of Connecticut, Photonics Lab, 1999, pp. 1-38.
V. V. Kotlyar, A. G. Nalimov y S. S. Stafeev, "Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus", J. Opt. Soc. Am. B, vol. 36, n.° 10, pp. 2850-2855, 2019. https://doi.org/10.1364/JOSAB.36.002850
F. L. Pedrotti y L. S. Pedrotti, Introduction to Optics, 2a ed. Englewood Cliffs: Prentice-Hall, 1993.
C. Schrijver y C. Zwaan Solar and Stellar magnetic activity (Cambridge University Press, New York, 2000).
E. Bowel y B. Zellner in Proceedings of the International Astronomical Union edited by T. Gehrels (University of Arizona Press Tucson, 1974).
J.H. Oort y T Walraven Bulletin of the Astronomical Institutes of the Netherlands 12, 285 (1956).
R. Kulsrud y E. Zweibel, Reports on progress in physics 71, 046901 (2008).
A. Raftopoulos, N. Kalyfommatou y C. P. Constantinou, "The properties and the nature of light: The study of newton's work and the teaching of optics", Science and Education, vol. 14, n.° 7, pp. 649-673, 2005. [En línea]. https://doi.org/10.1007/s11191-004-5609-6
H. G. Jerrard, "Modern description of polarized ligth: matrix methods", Optics & Laser Technology, vol. 14, n.° 6, pp. 309-319, 1982. https//doi.org/10.1016/0030-3992(82)90034-2
J. Peatross y M. Ware, Physics of Light and Optics. Utah: Brigham Young University, 2008.
N. C. Pistoni, "Simplified approach to the Jones calculus in retracing optical circuits", Applied Optics, vol. 34, n.° 34, pp. 7870-7876, 1995. https://doi.org/10.1364/AO.34.007870
D. A. Steck, Classical and modern optics. University of Oregon: Oregon Center for Optics and Departament of Physics, 2006.
L. L. Frenzel, Sistemas Electrónicos de comunicaciones, 3ª ed. México, D. F: Alfaomega, 2003.
P. Gorroochurn, "The end of statistical independence: the story of Bose-Einstein Statistics", The Mathematical Intelligencer, vol. 40, n.° 3, pp. 12-17, 2018. https://doi.org/10.1007/s00283-017-9772-4
J. Arnaud, J. M. Boé, L. y F. Philippe, "Illustration of the fermidirac statistics", American Journal of Physics, vol. 67, n.° 3, pp. 215-221, 1999. https://doi.org/10.1119/1.19228
G. A. D. Briggs, J. N. Butterfield y A. Zeilinger, "The Oxford questions on the foundations of quantum physics", Proc R Soc A 469:20130299, 2013. https//doi.org/10.1098/rspa.2013.0299
R. Muller y H. Wiesner, "Teaching quantum mechanics on an introductory level", American Journal of Physics, vol. 70, n.° 3, pp. 200-209, 2002. https://doi.org/10.1119/1.1435346
A. I. Borisenko y I. E. Tarapov, Vector and tensor analysis with applications. Worth Publishers, 1979.
G. R. Hext, "The estimation of second-order tensors, with related tests and designs", Biometrika, vol. 50, n.° 3-4, pp. 353-373, 1963. https://doi.org/10.1093/biomet/50.3-4.353
J. O. Rodríguez, J. C. Rodríguez y A. C. Sevilla, "Un proceso de formalización matemática: Desde las rotaciones hasta las matrices de spin de Pauli", Lat. Am. J. Phys. Educ, vol. 2, n.° 3, pp. 323-330, 2008. [En línea]. Disponible en: http://www.lajpe.org/sep08/30_Orlando_Organista.pdf
E. Witten, "Quantum field theory and the Jones polynomial", en Braid Group, Knot Theory And Statistical Mechanics II, pp. 361-451, 1994. https://doi.org/10.1142/9789812798275_0013
S. M. Reyes, D. A. Nolan, L. Shi y R. R. Alfano, "Special classes of optical vector vortex beams are Majorana-like photons", Optics Communications, vol. 464, n.° 1, pp. 1-5(125425), 2020. https//doi.org/10.1016/j.optcom.2020.125425
F. R. G. Díaz y R. G. Salcedo, "El fenómeno del espín semientero, cuaternios, y matrices de Pauli", Rev. Matem.: Teor. y Ap., vol. 24, n.° 1, pp. 45-60, 2017. https://doi.org/10.15517/rmta.v24i1.27749
P. M. Morse y H. Feshbach, "§1.6: Diadas y otros operadores vector" Métodos de la Física Teórica, vol. 1, Nueva York: McGraw-Hill, 1953.
P. Mitiguy, "Vectors and dyadics", en Introductory matrix algebra, 2009, pp. 19-28.
G. F. Torres del Castillo, "Rotaciones y espinores", Rev. Mex. Fís., vol. 40, n.° 1, pp. 119-131. 1994. [En línea]. Disponible en: https://rmf.smf.mx/pdf/rmf/40/1/40_1_119.pdf
D. S. Durfee y J. L. Archibald, "Applying classical geometry intuition to quantum spin", Eur. J. Phys, vol. 37, pp. 1-9, 2016. https://doi.org/10.1088/0143-0807/37/5/055409
L. Desmarais, Applied electro-optics, New Jersey: Prentice Hall, 1998.
J. M. Marcela, "Polarización de la luz: conceptos básicos y aplicaciones en astrofísica", Rev. Bras. Ensino Fís., vol. 40, n.° 4, pp. e4310, 2018, doi: 10.1590/1806-9126-rbef-2018-0024
D. S. Kliger, J. W. Lewis y C. E. Randall, "Introduction to the Jones calculus, Mueller calculus, and Pincaré sphere", en Polarized Light in Optics and Spectroscopy, California: Academic Press, 1990.
G. F. Torres del Castillo e I. R. García, "The Jones vector as a spinor and its representation on the Poincare sphere", Rev. Mex. Fís., vol. 57, n.° 5, pp. 406-413, 2011. [En línea]. Disponible en: http://www.scielo.org.mx/pdf/rmf/v57n5/v57n5a4.pdf
E. V. Masalov, N. N. Krivin y S. Y. Eshchenko, "Analysis of the influence of a uniform hydrometeorological formation on the polarización characteristics of an electromagnetic wave", Russian Physics Journal, vol. 60, n.° 9, pp. 1469-1475, 2018.
T. Nishiyama, "General plane or spherical electromagnetic waves with electric and magnetic fields parallel to each other", Wave Motion, vol. 54, pp. 58-65, 2015. https://doi.org/10.1016/j.wavemoti.2014.11.011
R. Hubrich y M. Eckhardt, "Motion vector estimation employing line and column vectors", U. S. Patent 7,852,937 B2, dic. 14, 2010. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/5f/c2/24/f4203476b78bf1/US7852937.pdf
R. C. Jones, "A new calculus for the treatment of optical systems. I. Description and Discussion of the Calculus", Journal of the Optical Society of America, vol. 31, n.° 7, pp. 488-493, 1941. https://doi.org/10.1364/JOSA.31.000488
R. C. Jones, "A New calculus for the treatment of optical systems. III. The Sohncke theory of optical activity", Journal of the Optical Society of America, vol. 31, n.° 7, pp. 500-503, 1941. https://doi.org/10.1364/JOSA.31.000500
E. Bretislav y D. Herschbach, "Stern and Gerlach: how a bad cigar heped reorient atomic physics", Phy. Tod., vol. 56, n.° 12, pp. 53-59, 2003. https://doi.org/10.1063/1.1650229
M. Danos, "Fully consistent phase conventions in angular momentum theory", Nucl., Part. Many Body Phy., pp. 319-334, 1972.
Y. Mohammed y A. Emadaldeen, "Separation of angular momentum", Am. J. App. Mat.s, vol. 4, n.° 1, pp.
-52, 2016. https://doi.org/10.11648/j.ajam.20160401.14
A. Bertapelle y A. Candilera, "Eigenvectors and eigenvalues: a new formula?", Boll Un. Mat. Ital vol. 13, pp. 329-333, 2020. https://doi.org/10.1007/s40574-020-00222-z
D. J. Griffiths, Intr. Quantum Mechs. Nueva Jersey: Prentice-Hall, 1995.
I. M. Greca y O. Freire, "Teaching introductory quantum physics and chemistry: caveats from the history of science and science teaching to the training of modern chemists", Chem. Educ. Res. Pract, vol. 15, pp. 286-296, 2014. https://doi.org/10.1039/C4RP00006D
J. Kronsbein, "Kinematics-Quaternions-Spinors-and Pauli's Spin Matrices", Am. J. Ph., vol. 35, pp. 335-342, 1967. https://doi.org/10.1119/1.1974074
D. A. Konkowski, T. M. Helliwell y C. Wieland, "Quantum singularity of Levi-Civita spacetimes", Class. Quantum Grav., vol. 21, n.° 1, pp. 265-272, 2004. https://doi.org/10.1088/0264-9381/21/1/018
G. B. Arfken y H. J. Weber, Física Matemática: Métodos Matemáticos para Engenharia e Física, 6a ed. Río de Janeiro: El Sevier, 2007.
H. U. Haq, "Geometry of spin: clifford algebraic approach", Resonance., vol. 21, pp. 1105-1117, 2016. https://doi.org/10.1007/s12045-016-0422-5
L. Boi, "Clifford geometric algebras, spin manifolds, and group actions in mathematics and physics", Adv. Appl. Clifford alg., vol. 19, pp. 611-656, 2009. https://doi.org/10.1007/s00006-009-0199-7
H. Goldstein, C. P. Poole y J. L. Safko, Classical mechanics, 6a ed. Addison-Wesley, 2001.
D. L. Schwartz, "The emergence of abstract representations in dyad problem solving", J. the Lear. Sc., vol.4, n.° 3, pp. 321-354, 1995. https://doi.org/10.1207/s15327809jls0403_3
R. C. Jones, "A new calculus for the treatment of optical systems v. a more general formulation, and description of another calculus", J. Op. Soc. Am., vol.. 37, n.° 2, pp. 107-110, 1947. https://doi.org/10.1364/JOSA.37.000107
P. Yeh, "Extended Jones matrix method", J. Soc. Am., vol.. 72, n.° 4, pp. 507-513, 1982. https//doi.org/10.1364/JOSA.72.000507
A. V. Volyar, T. A. Fadeeva y V. G Shvedov, "Optical vortex generation and jones vector formalims", Op. Spec.,vol. 93, n.° 2, pp. 267-272, 2002. https://doi.org/10.1134/1.1503758
A. Lien, "A detailed derivation of extended Jones matrix representation for twisted nematic liquid crystal displays", Liq. Crys., vol. 22, n.° 2, pp. 171-175, 1997. https://doi.org/10.1080/026782997209531
S. R. Cloude, "Group theory and polarisation algebra", Optik, vol. 75, n.° 1, pp. 26-36, 1986. [En línea]. Disponible en: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8138457