Influence of grain size, pile shape, and hydrological parameters on scouring

Keywords: scour, pile shape, grain size, flow rate, physical model, statistical analysis

Abstract

The objective of this work was to establish the influence of river bed granulometry, bridge pile shape, and hydrologic parameters on scour depth based on a physical model. For the experimental development, granular soil from a river was used and laboratory tests were carried out to determine the particle size distribution using materials whose classification, according to the Unified Soil Classification System (USCS), is SP (poorly graded sand) SW (well-graded sand), SP-SC (poorlymgraded sand with clay). In addition, a statistical analysis was performed to determine the significant differences between each of the variables and their influence on the process. It was found that theremis a strong relationship between the shape of the pile, flow rate, and granulometry, with the hydrodynamic characteristics of the flow as it passes through the piles, as well as the scour depth.

Author Biographies

Lorena Rivera-Soler, Universidad Santo Tomás

Candidata a magíster en hidrosistemas, ingeniera civil. Universidad Santo Tomás, Bogotá, Colombia.

Daniel Fabián Daza Ramírez, Universidad Santo Tomás

Ingeniero civil. Universidad Santo Tomás, Bogotá, Colombia.

Carlos Eduardo Torres, Universidad Santo Tomás

Magíster en ingeniería geotecnia, ingeniero civil. Docente en la Facultad de Ingeniería Civil, Universidad
Santo Tomás, Bogotá, Colombia.

Downloads

Download data is not yet available.

Author Biographies

Lorena Rivera-Soler, Universidad Santo Tomás

Candidata a magíster en hidrosistemas, ingeniera civil. Universidad Santo Tomás, Bogotá, Colombia.

Daniel Fabián Daza Ramírez, Universidad Santo Tomás

Ingeniero civil. Universidad Santo Tomás, Bogotá, Colombia.

Carlos Eduardo Torres, Universidad Santo Tomás

Magíster en ingeniería geotecnia, ingeniero civil. Docente en la Facultad de Ingeniería Civil, Universidad
Santo Tomás, Bogotá, Colombia.

References

C. Zhang, X. Zhang, M. Huang y H. Tang, "Responses of caisson-piles foundations to long-term cyclic lateral load and scouring", Soil Dyn. Earthq. Eng., vol. 119, abr. 2019, pp. 62-74, https://doi.org/10.1016/j.soildyn.2018.12.026

Q. Zhang, X.-L. Zhou y J.-H. Wang, "Numerical Investigation of Local Scour around three Adjacent Piles with different Arrangements Under Current", Ocean Eng., vol. 142, sep. 2017, pp. 625-638, https://doi.org/10.1016/j.oceaneng.2017.07.045

M. Zaid, Z. Yazdanfar, H. Chowdhury y F. Alam, "A Review on the Methods used to reduce the Scouring Effect of Bridge Pier", Energy Procedia, vol. 160, feb. 2019, pp. 45-50, https://doi.org/10.1016/j.egypro.2019.02.117

J. Suárez Díaz, Control de erosión en zonas tropicales. Bucaramanga: Instituto de Investigaciones sobre Erosión y Deslizamientos, 2001.

A. M. Shirole y R. Holt, "Planning for a Comprehensive Bridge Safety Assurance Program", 1991. /paper/PLANNING-FOR-A-COMPREHENSIVE-BRIDGE-SAFETY-PROGRAM-Shirole-Holt/659745ddbd088de0b91c4f5d443655d6f98547a0

B. W. Melville y S. E. Coleman, Bridge Scour. Water Resources Publication, 2000.

L. J. Prendergast y K. Gavin, "A review of bridge scour monitoring techniques", J. Rock Mech. Geotech. Eng., vol. 6, n.o 2, abr. 2014, pp. 138-149, https://doi.org/10.1016/j.jrmge.2014.01.007

F. Federico, G. Silvagni y F. Volpi, "Scour Vulnerability of River Bridge Piers", J. Geotech. Geoenvironmental Eng., vol. 129, n.o 10, oct. 2003, pp. 890-899, https://doi.org/10.1061/(ASCE)1090-0241(2003)129:10(890)

Z. Wang, L. Dueñas-Osorio y J. E. Padgett, "Influence of Scour Effects on the Seismic Response of Reinforced Concrete Bridges", Eng. Struct., vol. 76, oct. 2014, pp. 202-214, https://doi.org/10.1016/j.engstruct.2014.06.026

F. Liang, H. Zhang y M. Huang, "Influence of Flood-Induced Scour on Dynamic Impedances of Pile Groups Considering the stress History Of Undrained Soft Clay", Soil Dyn. Earthq. Eng., vol. 96, may 2017, pp. 76-88, https://doi.org/10.1016/j.soildyn.2017.02.009

J. Zhang, K. Wei y S. Qin, "An Efficient Numerical Model for Hydrodynamic Added Mass of Immersed Column with Arbitrary Cross - Section", Ocean Eng., vol. 187, sep. 2019, p. 106-192, https://doi.org/10.1016/j.oceaneng.2019.106192

T. Ochoa, Hidrología hidráulica y socavación en puentes, 1a. ed. Bogotá: Ecoe Ediciones, 2017.

E. M. Laursen y A. Toch, "A Generalized Model Study of Scour Around Bridge Piers and Abutments", STATE Univ. IOWA Repr. Eng., vol. 120, sep. 1953, pp. 123-31.

Melville B. W. y Sutherland A. J., "Design Method for Local Scour at Bridge Piers", J. Hydraul. Eng., vol. 114, n.o 10, oct. 1988, pp. 1210-1226, https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1210)

Melville Bruce W. y Chiew Yee-Meng, "Time Scale for Local Scour at Bridge Piers", J. Hydraul. Eng., vol. 125, n.o 1, ene. 1999, pp. 59-65, https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)

R. E. Baker, "Local Scour at Bridge Piers in non-uniform Sediment", University of Auckland, Auckland, New Zealand, 1986.

A. H. Cardoso y R. Bettess, "Effects of Time and Channel Geometry on Scour at Bridge Abutments", J. Hydraul. Eng., vol. 125, n.o 4, abr. 1999, pp. 388-399, https://doi.org/10.1061/(ASCE)0733-9429(1999)125:4(388)

G. López Méndez, "Erosión local en pilas de puentes", tesis de doctorado Universidad de La República, Facultad de Ingeniería, Instituto de Mecánica de los Fluidos e Ingeniería Ambiental, Montevideo, sep. 2013, p. 118.

P. Jaramillo-Mejía, "Evaluación del efecto de la geometría de pilares en la socavación del cauce", tesis de pregrado, Facultad de Ingeniería. Programa Académico de Ingeniería Civil. Universidad de Piura, Perú, 2017.

S. Wang, K. Wei, Z. Shen y Q. Xiang, "Experimental Investigation of Local Scour Protection for Cylindrical Bridge Piers Using Anti-Scour Collars", Water, vol. 11, n.o 7, jul. 2019, p. 1515, https://doi.org/10.3390/w11071515

D. Flores Paucar, "Influencia de la morfología fluvial en la socavación de estribos del puente las balsas Región Junín en el 2017", Universidad Nacional del Centro del Perú, 2019.

P. Arciniegas y V. Javier, "Simulación de un cauce fluvial para el estudio de la influencia de la sección de las pilas de los puentes en procesos de erosión o sedimentación", Sangolquí / Espe / 2011, 2011.

O. Baquero, "Ejercicios de tratamiento de agua potable, Bogotá: Universidad Santo Tomás, 2018.

J. Jurečková y J. Picek, "Shapiro-Wilk-type test of normality under nuisance regression and scale", Comput. Stat. Data Anal., vol. 51, n.o 10, jun. 2007, pp. 5184-5191, https://doi.org/10.1016/j.csda.2006.08.026

L. A. Gómez Lemos, "Patrones de cambio en la talla de la megafauna bentónica de fondos blandos tropicales: correlativos biológicos y ambientales", Bogotá: Universidad Nacional de Colombia, 2011.

H. Mendoza, "Diseño Experimental", [Internet], 2002. Disponible en http://www.virtual.unal.edu.co/cursos/ciencias/2000352/

S. L. Galarza-Molina, A. Torres, P. Moura y J. Lara-Borrero, "CRIDE: A Case Study in Multi-Criteria Analysis for Decision-Making Support in Rainwater Harvesting", Int. J. Inf. Technol. Decis. Mak., vol. 14, n.o 01, ene. 2015, pp. 43-67, https://doi.org/10.1142/S0219622014500862

P. E. McKnight y J. Najab, "Mann-Whitney U Test", en The Corsini Encyclopedia of Psychology, I. B. Weiner y W. E. Craighead, Eds. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010, p. corpsy0524.

I. C. Anaene Oyeka y G. U. Ebuh, "Modified Wilcoxon Signed-Rank Test", Open J. Stat., vol. 02, n.o 02, 2012, pp. 172-176, https://doi.org/10.4236/ojs.2012.22019

M. G. Larson, "Analysis of Variance", Circulation, vol. 117, n.o 1, ene. 2008, pp. 115-121, https://doi.org/10.1161/CIRCULATIONAHA.107.654335

A. Vargha y H. D. Delaney, "The Kruskal-Wallis Test and Stochastic Homogeneity", J. Educ. Behav. Stat., vol. 23, n.o 2, jun. 1998, pp. 170-192, https://doi.org/10.3102/10769986023002170

F. S. Nahm, "Nonparametric statistical tests for the continuous data: the basic concept and the practical use", Korean J. Anesthesiol., vol. 69, n.o 1, 2016, p. 8, https://doi.org/10.4097/kjae.2016.69.1.8

J. A. Kells, R. Balachandar y K. P. Hagel, "Effect of grain size on local channel scour below a sluice gate", Can. J. Civ. Eng., vol. 28, n.o 3, jun. 2001, pp. 440-451, https://doi.org/10.1139/l01-012

S. Du y B. Liang, "Comparisons of Local Scouring for Submerged Square and Circular Cross-Section Piles in Steady Currents", Water, vol. 11, n.o 9, ago. 2019, p. 1820, https://doi.org/10.3390/w11091820

Q. Xiang, K. Wei, F. Qiu, C. Yao y Y. Li, "Experimental Study of Local Scour around Caissons under Unidirectional and Tidal Currents", Water, vol. 12, n.o 3, feb. 2020, p. 640, https://doi.org/10.3390/w12030640

W.-Y. Chang, J.-S. Lai y C.-L. Yen, "Evolution of Scour Depth at Circular Bridge Piers", J. Hydraul. Eng., vol. 130, n.o 9, sep. 2004, pp. 905-913, doi: https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(905)

C. Ramos y E. H. Enrique, "Estudio de la socavación local en pilas circulares de puentes en lechos no cohesivos con modelación física en laboratorio", 2018.

G. Duque Escobar y C. E. Escobar, "Estructura del suelo y granulometría", [Internet], 2016. Disponible en http://bdigital.unal.edu.co/53252/17/estructuradelsueloygranulometria.pdf

J.-J. Wang, H.-P. Zhang, S.-C. Tang y Y. Liang, "Effects of Particle Size Distribution on Shear Strength of Accumulation Soil", J. Geotech. Geoenvironmental Eng., vol. 139, n.o 11, nov. 2013, pp. 1994-1997, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000931

M. Molina Arias, "¿Qué significa realmente el valor de p?", Pediatría Aten. Primaria, vol. 19, n.o 76, dic. 2017, pp. 377-381.

C. M. Avalos Castro y J. C. Zegarra Tordoya, "Evaluación de la socavación que producirá en pilares y estribos del puente moche, la derivación del caudal de la quebrada San Idelfonso", Trujillo: Universidad Privada del Norte, 2018.

D. Flores Paucar, "Influencia de la morfología fluvial en la socavación de estribos del puente las balsas Región Junín en el 2017", Huancayo, Perú: Universidad Nacional del Centro del Perú, 2019.

I. A. Anderson, M. M. Dewoolkar, D. M. Rizzo y D. R. Huston, "Scour Related Vermont Bridge Damage from Tropical Storm Irene", en Structures Congress 2014, Boston, Massachusetts, United States, abr. 2014, pp. 505-515, https://doi.org/10.1061/9780784413357.046

P. Meakin, "Fractal Aggregates", Adv. Colloid Interface Sci., vol. 28, ene. 1987, pp. 249-331, https://doi.org/10.1016/0001-8686(87)80016-7

C. Kranenburg, "The Fractal Structure of Cohesive Sediment Aggregates", Estuar. Coast. Shelf Sci., vol. 39, n.o 5, nov. 1994, pp. 451-460, https://doi.org/10.1006/ecss.1994.1075

Y. Xu, "Approach to the Erosion Threshold of Cohesive Sediments", Ocean Eng., vol. 172, ene. 2019, pp. 183-190, https://doi.org/10.1016/j.oceaneng.2018.11.036

N. J. Carter, N. C. Schwertman y T. L. Kiser, "A Comparison of two Boxplot Methods for Detecting Univariate Outliers which adjust for Sample Size and Asymmetry", Stat. Methodol., vol. 6, n.o 6, nov. 2009, pp. 604-621, https://doi.org/10.1016/j.stamet.2009.07.001

J. Majewska, "Identification of Multivariate Outliers - Problems and Challenges of Visualization Methods", 2015.

How to Cite
Rivera-Soler, L., Daza Ramírez, D. F., & Torres, C. E. (2022). Influence of grain size, pile shape, and hydrological parameters on scouring. Ciencia E Ingenieria Neogranadina, 32(2), 27–42. https://doi.org/10.18359/rcin.5257
Published
2022-12-26
Section
ARTICLES